imToken官方版下载地址|mtt

作者: imToken官方版下载地址
2024-03-07 20:04:12

MTT实验——原理、步骤、注意事项、示例图 - 知乎

MTT实验——原理、步骤、注意事项、示例图 - 知乎切换模式写文章登录/注册MTT实验——原理、步骤、注意事项、示例图指北针​天津大学 药学硕士一、实验应用1. 细胞增殖测定2. 细胞毒性测定3. 细胞活性测定 (不加样本,没有下述DAY 2步骤2)4. 药物筛选5. 肿瘤放射敏感性测定二、实验原理噻唑蓝,简称MTT。细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲臜 (Formazan)并沉积在细胞中,而死细胞无此功能。二甲基亚砜 (DMSO)能溶解细胞中的甲臜,用酶联免疫检测仪在570nm波长处测定其光吸收值,可间接反映活细胞数量。在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。MTT检测原理三、仪器和试剂1. 仪器:台式离心机、细胞计数仪、CO2培养箱、倒置显微镜、酶标仪 (570nm滤光片)、酶标板振荡器、10μL/100-200μL多通道移液器、生物安全柜等。2. 试剂:MTT检测试剂盒、DMEM或其他培养基、双抗、FBS、PBS、DMSO。四、实验步骤DAY 11. 对前一天培养好的处于对数期的细胞消化、离心、计数。2. 在96孔板上接种100μL 3k-7k/孔的细胞,在37℃、5% CO2、90%湿度条件下培养24小时。DAY 21. 在显微镜下观察细胞生长状态和密度,取生长状态良好,细胞分布及密度均一的孔进行实验。2. 配制不同浓度梯度的样本溶液,如300、100、33.3、11.1、3.7、1.2、0.4、0.14μM。每个浓度三个复孔加入到96孔板中,在37℃、5% CO2、90%湿度条件下培养适当时间长度。如6,12,24或48小时。DAY 3/41. MTT使用前在室温下解冻并离心 (一般MTT检测试剂盒中包含MTT粉末、MTT溶剂和甲臜增溶溶液三种组分,不同厂家的试剂盒可能略有差异。在实验前,需要将MTT溶剂加入到MTT粉末中配制成5mg/mL的MTT溶剂,用不完的可以放-20℃冰箱保存)。2. 用倒置显微镜检测细胞生长状态,并用4X/10X取生长状态良好,细胞分布及密度均一的孔拍照记录。3. 在每孔中加入10μL MTT溶液,使终浓度为0.5mg/mL。4. 在37℃、5% CO2、90%湿度条件下培养4小时。5. 小心地吸取孔中全部上清液,防止单层细胞破裂。6. 每孔加入100μL甲臜增溶溶液。7. 将板子放在振荡器上以300rpm/min震荡10min使甲臜全部溶解。8. 用酶标仪在570nm处测量吸光度。9. 用Excel及Graphpad Prism处理并分析结果。10. 结果示例图:Agyin JK, Breast Cancer Res. 2009;11(5):R74.Ito M, Cell Commun Signal. 2019;17(1):137. Published 2019 Oct 28.五、注意事项1. 第一次做实验时,建议先做几个孔摸索接种细胞的数量和细胞达到实验要求的培养时间,这是因为不同的细胞生长速度不同。2. 接种时细胞悬液一定要混匀,以避免细胞沉淀下来,导致每孔中的细胞数量不一致,最好一人接种,一人辅助混匀。3. 培养板周围一圈孔培养液容易挥发,为减少误差,建议培养板周围的四边每孔只加培养基、PBS或水。4. 药物样本初筛时可以适当减少浓度梯度的数量,增大浓度梯度间的倍数。若要确定样本的IC50则需要增加浓度梯度的数量,一般8-12个足矣。若有文献参考,则根据文献设置浓度梯度。5. 加入样本时要注意溶解样本的培养基中血清浓度对样本的影响,部分样本可能受血清影响较大,此时需使用无血清培养基溶解样本。6. 加样本前,要先吸出前面的培养基,但不可长期搁置防止细胞死亡,最好一块板吸完,立即加入配好的不同浓度的样本。7. 溶解样本后最好额外分装一管,以备后续二次实验或因试验操作失误损失一次样本,二次随取随用,也避免样本的反复冻融。8. 板子上要写好标记,板子和板盖都要写上序号,尽量避免写在孔上。9. 加入MTT溶液时需要避光,并且此过程需要大量枪头,尽量提前准备好。10. MTT有致癌性,实验时做好各种防护。11. 用排枪将上清液去除时,不可触碰到底部细胞,可略微将枪头触碰底面并倾斜板身,一次性将上清液全部吸出。12. 为了节省甲臜增溶溶液,可以每次从瓶中倒出一半到加样槽中。13. 设置实验孔 (含有细胞的培养基、MTT、待测物质)阴性对照孔 (含有细胞的培养基、MTT、不含待测物质)阳性对照孔 (含有细胞的培养基、MTT、阳性对照样本)空白孔 (不含细胞和待测物质的培养基、MTT)14. 实验结果计算公式:细胞存活率=[(实验孔-空白孔)/(阴性对照孔-空白孔)]×100%抑制率=[(阴性对照孔-实验孔)/(阴性对照孔-空白孔)]×100%六、参考文献[1]Agyin JK, Santhamma B, Nair HB, Roy SS, Tekmal RR. BU-32: a novel proteasome inhibitor for breast cancer. Breast Cancer Res. 2009;11(5):R74. doi:10.1186/bcr2411[2]Ito M, Codony-Servat C, Codony-Servat J, et al. Targeting PKCι-PAK1 signaling pathways in EGFR and KRAS mutant adenocarcinoma and lung squamous cell carcinoma. Cell Commun Signal. 2019;17(1):137. Published 2019 Oct 28. doi:10.1186/s12964-019-0446-z声明:本本章重在分享科研方法、资讯、传播知识。文章不构成任何投资建议,也非临床预防、诊断、治疗建议。未经许可严禁商业性转载,非商业性转载请注明出处。编辑于 2023-11-02 18:00・IP 属地广东细胞实验生物实验药学​赞同 82​​添加评论​分享​喜欢​收藏​申请

MTT法_百度百科

_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心MTT法播报讨论上传视频检测细胞存活和生长的方法收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。MTT法又称MTT比色法,是一种检测细胞存活和生长的方法。其检测原理为活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲臜(Formazan)并沉积在细胞中,而死细胞无此功能。二甲基亚砜(DMSO)能溶解细胞中的甲臜,用酶联免疫检测仪在490nm波长处测定其光吸收值,可间接反映活细胞数量。在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。该方法已广泛用于一些生物活性因子的活性检测、大规模的抗肿瘤药物筛选、细胞毒性试验以及肿瘤放射敏感性测定等。它的特点是灵敏度高、经济。中文名MTT法外文名MTT assay别    名MTT比色法学    科生命科学目录1简介2配制方法3实验步骤▪贴壁细胞▪悬浮细胞4缺点5注意事项简介播报编辑MTT法是一种检测细胞存活和生长的方法。MTT为黄色化合物,是一种接受氢离子的染料,可作用于活细胞线粒体中的呼吸链,在琥珀酸脱氢酶和细胞色素C的作用下,外源性MT还原为水不溶性的蓝紫色结晶甲瓒( Formazan)并沉积在细胞中,而死细胞无此功能。二甲基亚砜(DMSO)能溶解细胞中的甲瓒,用酶联免疫检测仪在490nm波长处测定其光吸收值,可间接反映活细胞数量。在一定细胞数范围内,MT结晶形成的量与活细胞数成正比 [1]。配制方法播报编辑MTT法通常,此法中的MTT浓度为5mg/ml。因此,可以称取MTT 0.5克,溶于100 ml的磷酸缓冲液(PBS)或无酚红的培养基中,用0.22μm滤膜过滤以除去溶液里的细菌,放4℃ 避光保存即可。在配制和保存的过程中,容器最好用铝箔纸包住。实验步骤播报编辑贴壁细胞1、收集对数期细胞,调整细胞悬液浓度,每孔加入100ul,铺板使待测细胞调密度至1000-10000孔,(边缘孔用无菌PBS填充)。2.、5%CO2,37℃孵育,至细胞单层铺满孔底(96孔平底板),加入浓度梯度的药物,原则上,细胞贴壁后即可加药,或两小时,或半天时间,但我们常在前一天下午铺板,次日上午加药.一般5-7个梯度,每孔100ul,设3-5个复孔.建议设5个,否则难以反应真实情况3.、5%CO2,37℃孵育16-48小时,倒置显微镜下观察。4、每孔加入20ulMTT溶液(5mg/ml,即0.5%MTT),继续培养4h。若药物与MTT能够反应,可先离心后弃去培养液,小心用PBS冲2-3遍后,再加入含MTT的培养液。5、终止培养,小心吸去孔内培养液。6、每孔加入150ul二甲基亚砜,置摇床上低速振荡10min,使结晶物充分溶解。在酶联免疫检测仪OD490nm处测量各孔的吸光值。7、同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜)悬浮细胞1、收集对数期细胞,调节细胞悬液浓度1×106/ml,按次序将①补足的1640(无血清)培养基40ul ;②加Actinomycin D(有毒性)10ul用培养液稀释 lg/ml,需预试寻找最佳稀释度,1:10-1:20);③需检测物10ul;④细胞悬液50ul(即5×104cell/孔),共100ul加入到96孔板(边缘孔用无菌水填充)。每板设对照(加100(储存液100 1640)。2、置37℃,5%CO2孵育16-48小时,倒置显微镜下观察。3、每孔加入10 ul MTT溶液(5 mg/ml,即0.5%MTT),继续培养4 h。(悬浮细胞推荐使用WST-1,培养4 h后可跳过步骤4),直接酶联免疫检测仪OD490nm测量各孔的吸光值)4、离心(1000转x10min),小心吸掉上清,每孔加入100 ul二甲基亚砜,置摇床上低速振荡10 min,使结晶物充分溶解。在酶联免疫检测仪OD490nm测量各孔的吸光值。5、同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜),每组设定3复孔缺点播报编辑由于MTT经还原所产生的甲瓒产物不溶于水,需被溶解后才能检测。这不仅使工作量增加,也会对实验结果的准确性产生影响,而且溶解甲瓒的有机溶剂对实验者也有损害。注意事项播报编辑MTT法只能用来检测细胞相对数和相对活力,但不能测定细胞绝对数。在用酶标仪检测结果的时候,为了保证实验结果的线性,MTT 吸光度最好在0-0.7 范围内。MTT一般最好现用现配,过滤后4℃避光保存两周内有效,或配制成5mg/ml保存在-20℃长期保存,避免反复冻融,最好小剂量分装,用避光袋或是黑纸、锡箔纸包住避光以免分解。我一般都把MTT粉分装在EP管里,用的时候现配,直接往培养板中加,没必要一下子配那么多,尤其当MTT变为灰绿色时就绝对不能再用了。MTT有致癌性,用的时候小心,有条件最好带那种透明的薄膜手套.配成的MTT需要无菌,MTT对菌很敏感;往96孔板加时不避光也没有关系,毕竟时间较短,或者你不放心的时候可以把操作台上的照明灯关掉.配制MTT时用PBS溶解,也有人用生理盐水配,60℃水浴助溶 [2]。PBS配方:Nacl 8gKcl 0.2gNa2HPO4 1.44gKH2PO4 0.24g调pH 7.4定容1L新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

MTT实验最全指南 - 实验方法 - 丁香通

MTT实验最全指南 - 实验方法 - 丁香通

丁香通

丁香园

论坛

丁香客

医药招聘

丁香医生

更多

会议

调查派

用药助手

丁当铺

丁香搜索

医药数据库

来问医生

我要登录

|

免费注册

|

我的丁香通

卖家:

成为卖家

更多合作

买家:

买家中心

移动端

发布求购 用户服务

产品 实验 品牌

搜索

搜产品

搜产品

搜实验

搜品牌

大家都在搜

免费发布求购

搜索

发布求购

全部产品分类

首页

丁香实验new

促销

试用中心

学术专区

资讯

品牌学堂

丁香学社

首页 实验方法 细胞技术 细胞功能测定 MTT实验最全指南

MTT实验最全指南

MTT实验最全指南

关键词: mtt实验 指南

来源: 互联网

166548 阅读

MTT实验最全指南有问题?丁香实验库全新大升级,10000+ 实验方法任你选

前往丁香实验

一、mtt 是什么

MTT是一种粉末状化学试剂,全称为3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide,汉语化学名为 3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐,商品名:噻唑蓝 。是一种黄颜色的染料。

二、MTT法用来做什么

简单地说:是一种检测细胞存活和生长的方法。

MTT主要有两个用途

1.药物(也包括其他处理方式如放射线照射)对体外培养的细胞毒性的测定;

2.细胞增殖及细胞活性测定。

三、为何MTT可以用来做上述工作

检测原理为活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲瓒(Formazan)并沉积在细胞中,而死细胞无此功能。二甲基亚砜(DMSO )能溶解细胞中的甲瓒,用酶标仪在490nm波长处测定其光吸收值,在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。根据测得的吸光度值(OD值),来判断活细胞数量,OD值越大,细胞活性越强(如果是测药物毒性,则表示药物毒性越小)。

四、实验所需材料

1.MTT 溶液的配制 通常MTT 配成的终浓度为5mg/ml,须用PBS或生理盐水做溶剂。

市面上一般MTT的包装为100mg,250mg或1g

1.1对于100mg这样的小包装,厂家都是将MTT放入小管中的,个人建议不要再用天平称量分装,而应该一次性将其全配制成溶液,如100mg用20mlPBS来溶解。 具休做法:预先在50ml离心管(没有的话,可用培养瓶替代)加入20ml PBS,从中先吸取500-1000ul PBS装入含MTT的小管中,吹打若干次后将其移入50ml离心管,然后再混匀。可以重复几次,以使小管中的MTT不残留于管内。将MTT完全混匀后,用0.22μm滤膜过滤以除去溶液里的细菌,分装避光(避光袋或是黑纸、锡箔纸包住)可长期保存于-20度。按细胞培养板每孔需加10ul计算,一般每96孔板约需1ml,所以分装时可考虑每管分装1ml。

1.2对于大包装,可按上述方法称取一部分溶解,也有人将粉剂分装在EP管里,用的时候现配,直接往培养板中加。

注意事项:

在配制和保存的过程中,容器最好用铝箔纸包住。

配成的MTT需要无菌,MTT对菌很敏感

MTT一般最好现用现配,过滤后4度避光保存两周内(个人曾做过4度避光保存4周的MTT溶液,效果仍然不错)有效,或配制成5mg/ml保存在-20度长期保存,避免反复冻融,最好小剂量分装,用避光袋或是黑纸、锡箔纸包住避光以免分解。当MTT变为灰绿色时就绝对不能再用。

MTT有致癌性,用的时候小心,有条件最好带那种透明的簿膜手套.

2. MTT甲瓒溶解液

2.1二甲基亚砜DMSO,可以直接溶解,无需配制,使用方便,溶解速度快,但对人体毒性较大,且需去除原培养液,在去除培养液的过程中,可能会把结晶去掉,导致结果不稳定。

2.2三联溶解液:SDS10g,异丁醇5ml,10M HCl 0.1ml 用双蒸水溶解配成100ml溶液(文献方法:周建军等,评价抗癌物质活性的改良MTT方法,中国医药工业杂志,1993,24(10):455-457),该溶解液不需去除原培养基,但溶解较慢。(个人觉得其溶解的能力不如DMSO强)

该溶解液因含有SDS,在低温保存的时候易产生结晶,因此在用之前必须提前几小时拿至室温,将SDS结晶全部溶解后再使用。

五、MTT法实验步骤

1: 胰酶消化对数期细胞,终止后离心收集,制成细胞悬液,细胞计数调整其浓度至5-10×104/ml。

细胞详细计数方法请参照易生物实验技术中的相关文章。对于初学者而言,要使细胞达到5-10×104/ml往往不知从何处着手,我在这里向大家提供一个简单的方法以初步确定细胞数量。

以一般细胞培养常用的25cm2为例,

1)细胞密度在长到约80%~90%(下图所示为80%~90%密度时细胞的大致状态),消化离心收集后,将上清去掉,加入3ml培养基使其混匀。

2)另取一支新的15ml无菌离心管(为下一步接种96孔板用),装入约9ml培养基.

3)从第一步准备的3ml细胞悬液中取1ml, 加入上管,混匀后细胞计数,此时一般为或小于5-10×104/ml,该浓度相当于细胞计数板4个大格内每大格平均5-10个细胞(见下图);如果不够该浓度,再根据计数的结果滴加细胞悬液,每滴按50ul计算。

4)细胞数量因实验目的不同应做相应调整,如一般细胞增殖实验每孔2000个就可以(相当于细胞悬液密度为2×104/ml),细胞毒性实验每孔5000—10000个(相当于细胞悬液密度为5×104/ml)。此外,还应根据细胞本身特性,如生长快慢,来决定细胞数量。比如:生长较快的细胞密度可略小。

2.将细胞悬液制备好后,轻轻混匀,每孔加入100ul, 这样待测细胞的密度为5000—10000/孔(边缘孔用无菌PBS填充)。

注意:因细胞在混匀后仍要继续沉降,因此接种的过程中要反复多次混匀,如每加6个孔就混匀一次,以确保接种的细胞密度在各孔之间完全相同,这对于MTT的结果至关重要。

3.将接种好的细胞培养板放入培养箱中培养,至细胞单层铺满孔底(96孔平底板),加入浓度梯度的药物,原则上,细胞贴壁后即可加药,或两小时,或半天时间,但我们常在前一天下午铺板,次日上午加药.一般5-7个梯度,每孔100ul,设3-5个复孔.建议设6个,否则难以反应真实情况。下图可做为96孔板的的参考步局。

对于加药,有人直接将药物按不同体积加入到96孔板中,以形成浓度梯度。但本人认为应尽量在EP管中将不同浓度的药物配好,然后将96孔板中的培养上清去掉(可以用排枪吸走)再加入100ul含不同浓度药物的培养基,这样能保证药物浓度的准确。另外,需注意的是,如果用这种方法,不要把96孔板的培养液全部吸走后再加药,应该吸完一部分后立即加样,避免由于96孔板干燥引起细胞死亡。

4.5%CO2,37℃孵育16-48小时,倒置显微镜下观察药物的作用效果。下图为一典型的药物梯度为细胞的毒性作用。

5.每孔加入10ulMTT溶液(5mg/ml,即0.5%MTT),继续培养4h。若药物与MTT能够反应,可先离心后弃去培养液,小心用PBS冲2-3遍后,再加入含MTT的培养液

6. 终止培养,准备溶解结晶。

溶解结晶的方法有两种,第一种,用DMSO溶解

1) MTT加入培养4h后,结晶可充分形成。将上清去掉,该过程要注意不能把Formazan结晶移走。有人直接用移液器将上清移走,也有人建议先铺几张滤纸在桌面,然后将96孔板轻轻倒置,这样上清便被滤纸吸走,以减少结果的损失。个人认为,这两种方法都有可能导致结晶的损失,从而引起结果的不准确。采用哪种方法,可以自己摸索一下再决定。

2) 每孔加入150ul二甲基亚砜,置摇床上低速振荡10min,使结晶物充分溶解。在酶联免疫检测仪OD490nm处测量各孔的吸光值。

另一种方法,用三联溶解液(见上面MTT甲瓒溶解液)

1) MTT加入培养4h后,结晶可充分形成。这种方法细胞上清可以不用去掉,直接在每孔加入100ul溶解液。(该溶解液因含有SDS,在低温保存的时候易产生结晶,因此在用之前必须提前几小时拿至室温,将SDS结晶全部溶解后再使用。)

2) 放入培养箱中继续孵育4—6小时,镜下观察,待结晶全部溶解后570nm测吸光度。通常37℃孵育4小时左右,紫色结晶会全部溶解。如果紫色结晶较小较少,溶解的时间会短一些。如果紫色结晶较大较多,溶解的时间会长一些。

在实际的操作过程中,往往为了等待4—6小时,使得实验者在下班以后或者晚上来测OD值,给实验者带来了很大的不方便。个人曾经摸索,加入溶解液后过夜再测对OD值基本无影响,但要注意的是一定要避光,不过培养箱关闭后本身就是闭光的,所以加入溶解液后放入培养箱中,第二天上班时再测OD值就可以了。

7、同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜)。

六、MTT结果分析

关于如何计算IC50

1、改良寇式法:lgIC50=Xm-I(P-(3-Pm-Pn)/4)

Xm:lg 最大剂量

I:lg(最大剂量/相临剂量)

P:阳性反应率之和

Pm:最大阳性反应率

Pn:最小阳性反应率

举个例子:各药物浓度作用于某肿瘤细胞后所得MTT值如下

药物浓度ug/ml

100

50

25

12.5

6.25

3.125

0

OD均值

0.080

0.093

0.236

0.374

0.441

0.531

0.614

公式中的最大最小阳性反应率就是最大最小抑制率

抑制率=1-加药组OD值/对照组OD值,如对于100ug/ml的药物,其抑制率=1-0.080/0.614=0.869,各组抑制率如下:

药物浓度ug/ml

100

50

25

12.5

6.25

3.125

抑制率

0.869

0.849

0.616

0.391

0.282

0.135

代入计算公式:

Pm=0.869

Pn=0.135

P=0.869+0.849+0.616+0.391+0.282+0.135=3.142

Xm=lg100=2

lgI=lg100/50=0.301

lgIC50=2-0.301*(3.142-(3-0.869-0.135)/4)=1.655

IC50=45.186

该药物的IC50值为45.186ug/ml

扫码关注「实验菌」,入科研社群,领学习资源

更有优质直播、研选好物、福利活动等你来!

经验交流

查看更多  

彩虹伊伊WB9C

你所在的学校的补助在全国是什么水平? 还记得你在读研时,所在学校的补助是多少吗~?读博的也可以说说呀。我的好少,有点想哭。   101 评论

彩虹伊伊WB9C

科研汪也想有春天:告诉我你们的另一半都在哪里找的? 小伙伴们,请问你们的女(男)朋友是怎么找到的?(好给后来的朋友参考啊)是交友网站,还是七大姑八大姨介绍,还是同学自然成事?春天到了,我也想拥有一段甜甜的恋爱~看看你们可怜又可爱的小师弟小师妹吧!   41 评论

一粒会飞的沙

细胞污染 悬浮细胞复苏后培养2.3天会出现小黑点,在倒置显微镜第四挡可见细菌在活动。采用两次离心,然后加平时双倍量的抗生素,效果不佳。实验用的东西都重新高压灭菌了,培养液也重新过滤了,个人操作也更加注意了,但仍然在复苏后出现细菌,苦恼!!!   35 评论

提问

感兴趣的产品

mtt实验

mtt实验流程

mtt实验污染

mtt实验全称

mtt 实验 服务

mtt增值实验

mtt细胞实验

mtt检测实验

mtt实验步骤

感兴趣的厂家

武汉菲恩生物科技有限公司

北京博奥森生物技术有限公司

广州科适特科学仪器有限公司

mtt实验全称厂家

mtt 实验 服务厂家

mtt增值实验厂家

mtt细胞实验厂家

mtt检测实验厂家

mtt实验步骤厂家

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

移动版: 实验详情页

MACS 细胞分选入门指南

52 内容 377 订阅

查看专题

相关实验Protocol 更多

细胞粘附实验(MTT 比色法计数)

MTT 法检测药物对细菌的半抑制浓度

MTT 法检测细胞毒性与增殖实验

Tau 蛋白操作指南

细胞计数方法

MTT实验最全指南

ROS的检测方法

Transwell侵袭实验总结之操作步骤

推荐阅读 更多

摇床分类选型指南

外泌体样本收集指南

免疫共沉淀实验指南

免疫荧光实验指南

缓冲液配制指南

最全面的MTT大汇总

我的询价

询价列表

点击加载更多

暂时没有已询价产品

发送产品

手机验证

快捷询价 发送名片

让更多商家联系我

当你希望让更多商家联系你时,可以勾选后发送询价,平台会将你的询价消息推荐给更多商家。

发送

提问

用户服务

意见反馈

合作咨询

关于丁香通

产品库

最新产品列表

丁香实验

用户服务中心

试用中心

丁香通新浪微博

公司信息

关于我们

联系我们

友情链接

法律声明

网站导航

加盟丁香园

我是买家

求购商品

品牌专区

品牌学堂

促销专区

我是卖家

服务报价

广告媒体

客户说明

广告规则

企业合作

无忧采购 轻松科研

科研好物关注研选号

意见反馈

MTT Assay Protocol for Cell Viability and Proliferation

Assay Protocol for Cell Viability and ProliferationPHENProductsApplicationsServicesDocumentsSupportAnalytical ChemistryCell Culture & AnalysisChemistry & BiochemicalsClinical & DiagnosticsFiltrationGreener Alternative ProductsIndustrial MicrobiologyLabwareMaterials ScienceMolecular Biology & Functional GenomicsmRNA Development & ManufacturingPharma & Biopharma ManufacturingProtein BiologyWater PurificationAnalytical ChemistryCell Culture & AnalysisChemistry & Synthesis Clinical & DiagnosticsEnvironmental & Cannabis TestingFood & Beverage Testing & ManufacturingGenomicsMaterials Science & EngineeringMicrobiological TestingmRNA Development & ManufacturingPharma & Biopharma ManufacturingProtein BiologyResearch & Disease AreasContract ManufacturingContract TestingCustom ProductsDigital Solutions for Life ScienceIVD Development & ManufacturingmRNA Development & ManufacturingProduct ServicesSupportSafety Data Sheets (SDS)Certificates of Analysis (COA)Certificates of Origin (COO)Certificates of Quality (COQ)Customer SupportContact UsFAQSafety Data Sheets (SDS)Certificates (COA/COO)Quality & RegulatoryCalculators & AppsWebinarsHomeCell Counting & Health AnalysisMTT Assay Protocol for Cell Viability and ProliferationMTT Assay Protocol for Cell Viability and Proliferation

Cell Proliferation Kit I (MTT) Components

Assay Protocol to Measure Cytotoxicity

Assay Protocol to Measure Cell Growth

The MTT assay is used to measure cellular metabolic activity as an indicator of cell viability, proliferation and cytotoxicity. This colorimetric assay is based on the reduction of a yellow tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT) to purple formazan crystals by metabolically active cells (Figure 1).6,7,35 The viable cells contain NAD(P)H-dependent oxidoreductase enzymes which reduce the MTT to formazan.36 The insoluble formazan crystals are dissolved using a solubilization solution and the resulting colored solution is quantified by measuring absorbance at 500-600 nanometers using a multi-well spectrophotometer. The darker the solution, the greater the number of viable, metabolically active cells.

This non-radioactive, colorimetric assay system using MTT was first described by Mosmann, T et al.1 and improved in subsequent years by several other investigators.2-6 The Cell Proliferation Kit I (MTT) is an optimized MTT assay kit containing ready to use reagents, does not need washing steps or additional reagents. It is a quantitative assay that allows rapid and convenient handling of a high number of samples. The Cell Proliferation Kit I (MTT) can be used for multiple applications, such as,

Quantification of cell growth and viability.1,3,5-7

Measurement of cell proliferation in response to growth factors, cytokines and nutrients.1-3,6,8-12 (see figure 3).

Measurement of cytotoxicity. Examples are the quantification of tumor necrosis factor-a or -b effects 13,14 (see figure 2) or macrophage induced cell death15,16 and the assessment of cytotoxic 17-34 or growth inhibiting agents such as inhibitory antibodies.

To study cell activation.4

Figure 1.Metabolism of MTT to a formazan salt by viable cells as shown in a chemical reaction (A) and in a 96-well plate (B).Cell Proliferation Kit I (MTT) Components (Product No. 11465007001)

MTT Reagent

Ready to use, non-sterile

5 vials containing 5 ml MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (1X), at 5 mg/mL in phosphate-buffered saline (PBS, 806552)

Solubilization Solution

1X, ready-to-use

3 bottles with 90 mL

Assay Protocol to Measure Cytotoxicity

Additional Reagents Required:

Culture medium, e.g., RPMI 1640 (R0883) containing 10% heat inactivated FCS (fetal calf serum, 12106C), 2 mM glutamine (G6392) and 1 μg/mL actinomycin C1 (actinomycin D, A9415).

If an antibiotic is to be used, additionally supplement media with penicillin/streptomycin or gentamicin

Tumor necrosis factor-α, human (hTNF-α) (10 μg/mL), sterile (T6674).

Protocol:

For the determination of the cytotoxic effect of human tumor necrosis factor-α (hTNF-α, T6674) on WEHI-164 cells (mouse fibrosarcoma, 87022501) (see Figure 2).

Preincubate WEHI-164 cells at a concentration of 1 × 106 cells/ml in culture medium with 1 μg/mL actinomycin C1 for 3 h at 37 °C and 5-6.5% CO2.

Seed cells at a concentration of 5 × 104 cells/ well in 100 μl culture medium containing 1 μg/ml actinomycin C1 and various amounts of hTNF-α (final concentration e.g., 0.001–0.5 ng/mL) into microplates (tissue culture grade, 96 wells, flat bottom).

Incubate cell cultures for 24 h at +37 °C and 5-6.5% CO2.

After the incubation period, add 10 μl of the MTT labeling reagent (final concentration 0.5 mg/ml) to each well.

Incubate the microplate for 4 h in a humidified atmosphere (e.g., +37 °C, 5-6.5% CO2).

Add 100 μl of the Solubilization solution into each well.

Allow the plate to stand overnight in the incubator in a humidified atmosphere (e.g., +37 °C, 5-6.5% CO2).

Check for complete solubilization of the purple formazan crystals and measure the absorbance of the samples using a microplate (ELISA) reader. The wavelength to measure absorbance of the formazan product is between 550 and 600 nm according to the filters available for the ELISA reader, used. The reference wavelength should be more than 650 nm.

Figure 2.Determination of the cytotoxic activity of recombinant human TNF-α (hTNF-α) on WEHI-164 cells (mouse fibrosarcoma) using MTT assay.Assay Protocol to Measure Cell Growth

Additional Reagents Required

Culture medium (e.g., DMEM, Product No. D5671) containing 10% heat inactivated FCS (fetal calf serum, Product No. 12106C)

2 mM glutamine (Product No. G6392)

0.55 mM L-arginine (Product No. A8094) 

0.24 mM L-asparagine-monohydrate (Product No. A4284)

50 μM 2-mercaptoethanol (Product No. M3148), 

HT-media supplement (Product No. H0137) (1×), containing 0.1 mM hypoxanthine and 16 μM thymidine. If an antibiotic is to be used, additionally supplement media with penicillin/streptomycin or gentamicin. 

Interleukin-6, human (hIL-6, Product No. SRP3096) (200,000 U/mL, 2 μg/mL) sterile

Protocol

For the determination of human interleukin-6 (hIL-6) activity on 7TD1 cells (mouse-mouse hybridoma, DSMZ, ACC 23) (see fig. 3).

Seed 7TD1 cells at a concentration of 2 × 103 cells/well in 100 μL culture medium containing various amounts of IL-6 [final concentration e.g., 0.1-10 U/mL (0.001-0.1 ng/mL)] into microplates (tissue culture grade, 96 wells, flat bottom).

Incubate cell cultures for 4 days at +37 °C and 5-6.5% CO2.

After the incubation period, add 10 μL of the MTT labeling reagent (final concentration 0.5 mg/mL) to each well.

Incubate the microplate for 4 h in a humidified atmosphere (e.g., +37 °C, 5-6.5% CO2).

Add 100 μL of the Solubilization solution into each well.

Allow the plate to stand overnight in the incubator in a humidified atmosphere (e.g., +37 °C, 5-6.5% CO2).

Check for complete solubilization of the purple formazan crystals and measure the spectrophotometrical absorbance of the samples using a microplate (ELISA) reader. The wavelength to measure absorbance of the formazan product is between 550 and 600 nm according to the filters available for the ELISA reader, used. The reference wavelength should be more than 650 nm.

Figure 3.Proliferation of 7TD1 cells (mouse-mouse hybridoma) in response to recombinant human interleukin-6 (hIL-6) using MTT assay.Similar Assays

XTT assay and WST-1 assay can also be used for measuring cell viability and proliferation.

ProductsLoading References

References 1-201. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-42. Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. 1986. An improved colorimetric assay for interleukin 2. Journal of Immunological Methods. 93(2):157-165. https://doi.org/10.1016/0022-1759(86)90183-33. Denizot F, Lang R. 1986. Rapid colorimetric assay for cell growth and survival. Journal of Immunological Methods. 89(2):271-277. https://doi.org/10.1016/0022-1759(86)90368-64. Gerlier D, Thomasset N. 1986. Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods. 94(1-2):57-63. https://doi.org/10.1016/0022-1759(86)90215-25. Hansen MB, Nielsen SE, Berg K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods. 119(2):203-210. https://doi.org/10.1016/0022-1759(89)90397-96. Vistica VT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. 1991. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51(10):2515-20.7. Maehara Y, Anai H, Tamada R, Sugimachi K. 1987. The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. European Journal of Cancer and Clinical Oncology. 23(3):273-276. https://doi.org/10.1016/0277-5379(87)90070-88. Heeg K, Reimann J, Kabelitz D, Hardt C, Wagner H. 1985. A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. Journal of Immunological Methods. 77(2):237-246. https://doi.org/10.1016/0022-1759(85)90036-59. Hooton, Gibbs J, Paetkan U C. 1985. Interaction of interleukin 2 with cells: quantitative analysis of effects.. J Immunol. 1352464–2473.10. Mosmann T, Fong T. 1989. Specific assays for cytokine production by T cells. Journal of Immunological Methods. 116(2):151-158. https://doi.org/10.1016/0022-1759(89)90198-111. Ohno M, Abe T. 1991. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). Journal of Immunological Methods. 145(1-2):199-203. https://doi.org/10.1016/0022-1759(91)90327-c12. Berg K, Hansen MB, Nielsen SE. 1988. J. Interferon Res.. 8((suppl. 1)):S. 67.13. Green LM, Reade JL, Ware CF. 1984. Rapid colormetric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lymphokines. Journal of Immunological Methods. 70(2):257-268. https://doi.org/10.1016/0022-1759(84)90190-x14. Espevik T, Nissen-Meyer J. 1986. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. Journal of Immunological Methods. 95(1):99-105. https://doi.org/10.1016/0022-1759(86)90322-415. Ferrari M, Fornasiero MC, Isetta AM. 1990. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. Journal of Immunological Methods. 131(2):165-172. https://doi.org/10.1016/0022-1759(90)90187-z16. van de Loosdrecht AA, Nennie E, Ossenkoppele GJ, Beelen RH, Langenhuijsen MM. 1991. Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay. Journal of Immunological Methods. 141(1):15-22. https://doi.org/10.1016/0022-1759(91)90205-t17. Cole S. 1986. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol.. 17(3): https://doi.org/10.1007/bf0025669518. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47(4):936-42.19. Twentyman P, Luscombe M. 1987. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 56(3):279-285. https://doi.org/10.1038/bjc.1987.19020. Park JG, Park BS, Steinberg SM, Carmichael J, Collins JM, Minna JD, Gazdar AF. 1987. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer Res. 475875-9.References 21-36 21. 1988. FFPS News. Oryx. 22(4):246-250. https://doi.org/10.1017/s003060530002248122. Pieters R, Huismans D, Leyva A, Veerman A. 1988. Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemia. Cancer Letters. 41(3):323-332. https://doi.org/10.1016/0304-3835(88)90294-723. McHaLe A, McHaLe L. 1988. Use of a tetrazolium based colorimetric assay in assessing photoradiation therapy in vitro. Cancer Letters. 41(3):315-321. https://doi.org/10.1016/0304-3835(88)90293-524. Edmondson JM, Armstrong LS, Martinez AO. 1988. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. Journal of Tissue Culture Methods. 11(1):15-17. https://doi.org/10.1007/bf0140440825. Faircloth GT, Stewart D, Clement JJ. 1988. A simple screening procedure for the quantitative measurement of cytotoxicity to resting primary lymphocyte cultures. Journal of Tissue Culture Methods. 11(4):201-205. https://doi.org/10.1007/bf0140731426. Campling BG, Pym J, Galbraith PR, Cole SP. 1988. Use of the mtt assay for rapid determination of chemosensitivity of human leukemic blast cells. Leukemia Research. 12(10):823-831. https://doi.org/10.1016/0145-2126(88)90036-727. Pieters R, Huismans D, Leyva A, Veerman A. 1989. Comparison of the rapid automated MTT-assay with a dye exclusion assay for chemosensitivity testing in childhood leukaemia. Br J Cancer. 59(2):217-220. https://doi.org/10.1038/bjc.1989.4428. Twentyman PR, Fox NE, Rees JKH. 1989. Chemosensitivity testing of fresh leukaemia cells using the MTT colorimetric assay. Br J Haematol. 71(1):19-24. https://doi.org/10.1111/j.1365-2141.1989.tb06268.x29. Plumb JA, Milroy R, Kaye SB. 1989. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 494435–4440.30. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. 1988. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48589–601.31. Heo DS, Park JG, Hata K, Day R, Herberman RB, Whiteside TL. 1990. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res. 503681–3690.32. Ruben RL, Neubauer RH. 1987. Semiautomated colorimetric assay for in vitro screening of anticancer compounds. Cancer Treat Rep. 711141–1149..33. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR. 1990. Comparison of In Vitro Anticancer-Drug-Screening Data Generated With a Tetrazolium Assay Versus a Protein Assay Against a Diverse Panel of Human Tumor Cell Lines. JNCI Journal of the National Cancer Institute. 82(13):1113-1117. https://doi.org/10.1093/jnci/82.13.111334. 1991. Announcement. Utilitas. 3(2):330-330. https://doi.org/10.1017/s095382080000125435. Slater T, Sawyer B, Sträuli U. 1963. Studies on succinate-tetrazolium reductase systems. Biochimica et Biophysica Acta. 77383-393. https://doi.org/10.1016/0006-3002(63)90513-436. Berridge M, Tan A. 1993. Characterization of the Cellular Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular Localization, Substrate Dependence, and Involvement of Mitochondrial Electron Transport in MTT Reduction. Archives of Biochemistry and Biophysics. 303(2):474-482. https://doi.org/10.1006/abbi.1993.1311 Related ArticlesProtocol Guide: XTT Assay for Cell Viability and ProliferationProtocol Guide: WST-1 Assay for Cell Proliferation and ViabilityHow to use Scepter™ 2.0 Cell CounterIn Situ Cell Death Detection Kit, Fluorescein Protocol & TroubleshootingIn Vitro Permeability AssaysKidney Transporter AssaysMetabolic Stability AssaysMitochondrial Toxicity AssaysView MoreRelated Product CategoriesClassical Media & BuffersFetal Bovine Serum (FBS)Amino AcidsAntibioticsGrowth Factors and CytokinesMammalian Cell LinesDetermination of Trace Elements Following EN 13805 Using ICP-OESAllergenic Fragrance Testing – New Certified Reference Materials and GC-FID/GC-MS ApplicationView More TopSign In To ContinueTo continue reading please sign in or create an account.Sign InDon't Have An Account?Regis

MTT实验原理、方法、实验步骤 - 黄灿华教授 实验室

MTT实验原理、方法、实验步骤 - 黄灿华教授 实验室

黄灿华教授 实验室

  中文     中文   /   English

搜索

首页

新闻动态

成员

文献出版

科研励志

精选文章

读书报告

实验室活动

MTT实验原理、方法、实验步骤

分享到:微信新浪微博复制网址

MTT实验一、原理 MTT全称为3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide,汉语化学名为 3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐,商品名:噻唑蓝。是一种黄颜色的染料。MTT比色法,是一种检测细胞存活和生长的方法。其检测原理为活细胞线粒体中的琥珀酸脱氢酶能使外源性MTT还原为水不溶性的蓝紫色结晶甲瓒(Formazan)并沉积在细胞中,而死细胞无此功能。二甲基亚砜(DMSO)能溶解细胞中的甲瓒,用酶联免疫检测仪在490nm波长处测定其光吸收值,可间接反映活细胞数量。在一定细胞数范围内,MTT结晶形成的量与细胞数成正比。该方法已广泛用于一些生物活性因子的活性检测、大规模的抗肿瘤药物筛选、细胞毒性试验以及肿瘤放射敏感性测定等。它的特点是灵敏度高、经济。   缺点:由于MTT经还原所产生的甲瓒产物不溶于水,需被溶解后才能检测。这不仅使工作量增加,也会对实验结果的准确性产生影响,而且溶解甲的有机溶剂对实验者也有损害。MTT 溶液的配制方法:通常,此法中的MTT 浓度为5mg/ml。因此,可以称取MTT 0.5克,溶于100 ml的磷酸缓冲液(PBS)或无酚红的培养基中,用0.22μm滤膜过滤以除去溶液里的细菌,放4℃ 避光保存即可。在配制和保存的过程中,容器最好用铝箔纸包住。实验的时候我一般关闭超净台上的日光灯来避光,觉得这样比较好。需要注意的是,MTT法只能用来检测细胞相对数和相对活力,但不能测定细胞绝对数。在用酶标仪检测结果的时候,为了保证实验结果的线性,MTT 吸光度最好在0-0.7 范围内。MTT一般最好现用现配,过滤后4ºC避光保存两周内有效,或配制成5mg/ml保存在-20度长期保存,避免反复冻融,最好小剂量分装,用避光袋或是黑纸、锡箔纸包住避光以免分解。我一般都把MTT粉分装在EP管里,用的时候现配,直接往培养板中加,没必要一下子配那么多,尤其当MTT变为灰绿色时就绝对不能再用了。MTT有致癌性,用的时候小心,有条件最好带那种透明的簿膜手套.配成的MTT需要无菌,MTT对菌很敏感;往96孔板加时不避光也没有关系,毕竟时间较短,或者你不放心的时候可以把操作台上的照明灯关掉. 配制MTT时用PBS(ph=7.4)溶解。PBS配方:Nacl 8g + Kcl 0.2g + Na2HPO4 1.44g + KH2PO4 0.24g调pH 7.4,定容1L。 二、几种MTT法实验步骤 普通MTT法实验步骤: 1:接种细胞:用含10%胎小牛血清得培养液配成单个细胞悬液,以每孔1000-10000个细胞(细胞浓度的问题见后面的注意事项)接种到96孔板,每孔体积200ul.2: 培养细胞:同一般培养条件,培养3-5天(可根据试验目的和要求决定培养时间)。3:呈色:培养3-5天后,每孔加MTT溶液(5mg/ml用PBS配制,pH=7.4)10ul.继续孵育4 h,终止培养,小心吸弃孔内培养上清液,对于悬浮细胞需要离心后再吸弃孔内培养上清液。每孔加100ul DMSO,振荡10min,使结晶物充分融解。4:比色:选择490nm波长,在酶联免疫监测仪上测定各孔光吸收值,记录结果,以时间为横坐标,吸光值为纵坐标绘制细胞生长曲线 药物MTT法实验步骤(1)贴壁细胞:1: 收集对数期细胞,调整细胞悬液浓度,每孔加入100ul,铺板使待测细胞调密度1000- 10000 /孔,(细胞浓度的问题见后面的注意事项)。2: 5%CO2,37℃孵育,至细胞单层铺满孔底(96孔平底板),加入浓度梯度的药物,原则上,细胞贴壁后即可加药,或两小时,或半天时间,但我们常在前一天下午铺板,次日上午)加药.一般5-7个梯度,每孔100ul,设3-5个复孔.建议设5个,否则难以反应真实情况3: 5%CO2,37℃孵育16-48小时,倒置显微镜下观察。4: 每孔加入10ulMTT溶液(5mg/ml,即0.5%MTT),继续培养4h。若药物与MTT能够反应,可先离心后弃去培养液,小心用PBS冲2-3遍后,再加入含MTT的培养液。5: 终止培养,小心吸去孔内培养液。6: 每孔加入100ul二甲基亚砜,置摇床上低速振荡10min,使结晶物充分溶解。在酶联免疫检测仪OD490nm处测量各孔的吸光值。7: 同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜)。(2)悬浮细胞:1: 收集对数期细胞,调节细胞悬液浓度1×106/ml(细胞浓度的问题见后面的注意事项),按次序将①补足的1640(无血清)培养基40ul ;②加Actinomycin D(有毒性)10ul用培养液稀释 (储存液100mg/ml,需预试寻找最佳稀释度,1:10-1:20);③需检测物10ul;④细胞悬液50ul(即5×104cell/孔),共100ul加入到96孔板(边缘孔用无菌水填充)。每板设对照(加100ml 1640)2: 置37℃,5%CO2孵育16-48小时,倒置显微镜下观察。3: 每孔加入10 ul MTT溶液(5 mg/ml,即0.5%MTT),继续培养4 h。(悬浮细胞推荐使用WST-1,培养4 h后可跳过步骤4),直接酶联免疫检测仪OD570nm(630nm校准)测量各孔的吸光值)4、离心(1000转x10min),小心吸掉上清,每孔加入100 ul二甲基亚砜,置摇床上低速振荡10 min,使结晶物充分溶解。在酶联免疫检测仪OD570nm(630nm校准)测量各孔的吸光值。5、同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜),每组设定3复孔。 三、注意事项: (1) 选择适当得细胞接种浓度和培养时间。 一般情况下,96孔培养板的一内贴壁细胞长满时约有105个细胞。但由于不同细胞贴壁后面积差异很大,因此,在进行MTT试验前,要进行预实验检测其贴壁率、倍增时间以及不同接种细胞数条件下的生长曲线,确定试验中每孔的接种细胞数和培养时间,以防止细胞过满。这样,才能保证MTT结晶形成的量与细胞数呈的线性关系。否则细胞数太多敏感性降低,太少观察不到差异。因此,很多高手总结出“宁少勿多”的原则,这一原则在大多数情况下是适用的。对于体积大,增殖快的细胞,比如肿瘤细胞,在96孔板中不能接种太多数目的细胞。一般应该少于104个/孔。同时,细胞贴壁后不可培养过久,以防过于密集。大多数肿瘤细胞最佳点板浓度在4000-5000/孔,太少的话SD值会很大。 对于体积小,增殖慢、悬浮的细胞,在96孔板中可以接种更多数目的细胞。甚至可以超过105个/孔。同时,为了观察药物对这类细胞的效果,可以较上一种细胞培养更长时间。在做肿瘤细胞的时候,往往要根据细胞生长速度以及药物的特性(有时间依赖性和浓度依赖性的药物)来确定培养时间是48小时还是72小时. (2) 设置调零孔(只加培养基100ul、MTT10ul、二甲基亚砜100ul)。 (3) 设置空白孔(细胞、药物溶解介质、培养液共100ul、10ulMTT 、100ul二甲基亚砜)。 (4) MTT实验吸光度最后要在0-0.7之间,超出这个范围就不是直线关系。 (5) 96孔板边缘32孔用无菌PBS填充,因为边缘的32孔中水分蒸发很快,药物易被浓缩,对实验影响大。同时加入pbs液填充后,可以一定程度上保持中间孔的水分。 (6)防止药物与MTT反应。如果96孔板中加入了具有氧化还原性的药物,比如谷胱甘肽、Vit E、VitC,那建议你用PBS将细胞洗洗,否则这些药物会将MTT还原成棕褐色沉淀,这种效果可能是你不需要的。 (7) 吸收值分析在理想的MTT实验中,如果是细胞抑制实验,不加药物处理的空白组的吸收值应该在0.8-1.2左右,太小检测误差占的比例较多,太大吸收值可能已经超出线性范围。这个原理在朗伯-比尔定律中有解释。 (8)培养过程中换液100ul的培养液对于10的4~5次方的增殖期细胞来说,很难维持50h以上,如果营养不够的话,细胞会由增殖期渐渐趋向G0期而趋于静止,影响结果。如果培养时间长,在48h应该换液一次。 (9) 避免血清干扰高的血清物质会影响试验孔的光吸收值。由于试验本底增加,会试验敏感性。因此,一般选小于10%胎牛血清的培养液进行。在呈色后,尽量吸净培养孔内残余培养液。 (10)判断污染 如加入MTT后都有个别孔立即变为蓝黑色,则污染的可能性極大。在加MTT前可以先在镜下观察,看看是否有孔染菌,染菌的孔常常是临近的。(11)加DMSO前要把液体小心吸掉但培养液里的紫色结晶可能会吸去,可在这之前先用平板离心机离心96孔板,2000r,5分钟,然后吸掉上清(如果是悬浮细胞,则推荐此法,悬浮细胞要离心2500rpm×10min.且其做MTT最好用圆底型96孔板,清除上清时注意不要把下面的结晶颗粒吸掉。对于贴壁细胞,可以试着将96孔板倾斜30度角,然后用枪尖慢慢吸。 如有错误,请您提出更正;如有遗漏,请您补充。祝您实验顺利!

上一篇:  Western-Blot详解(原理、分类、试剂、步骤及问题解答)

下一篇:  励志名言献给科研同路人

首页©2024 hcanhua 版权所有 手机版 |本站使用凡科建站搭建 | 管理登录 | 蜀ICP备2022010141号-1 | 本站支持  --

MTT细胞增殖及细胞毒性检测试剂盒(C0009S)

MTT细胞增殖及细胞毒性检测试剂盒(C0009S)

微信在线咨询

扫码加微信

快速订购 |

联系我们

选择语言:

中文 |

English

登录 |

注册

首页

| 全部产品

| 技术服务

| 质粒平台

| 订购中心

| 免费试用

| 促销活动

| 技术咨询

| 关于我们

新冠相关产品

试剂

核酸相关

多肽与蛋白

细胞相关

信号转导

抗体

抑制剂激活剂等

常用试剂

耗材

仪器

技术服务

菌种与质粒

>

菌种与培养

酵母相关

病毒构建

感受态及制备

原核载体

真核载体

报告基因质粒

基因表达质粒

荧光探针质粒

昆虫与酵母质粒

植物用质粒

人基因编辑质粒(库)

体外转录用质粒

生物素标记质粒

质粒平台

DNA提取与纯化

>

质粒抽提

DNA纯化胶回收

基因组DNA抽提

DNA操作

>

内切酶与外切酶

修饰酶

DNA连接

重组与克隆

DNA转化

基因突变

基因编辑

反转录与PCR

>

反转录

PCR相关

定量PCR

qPCR内参引物对

qPCR非内参引物对

等温扩增

微生物检测

DNA电泳

>

电泳介质与溶液

DNA分子量标准

电泳染料

DNA标记和检测

>

生物素标记与检测

荧光标记与检测

EMSA相关

DNA甲基化检测

建库与高通量测序

EMSA相关

RNA相关

>

RNA提取

RNA电泳

切割、合成、连接和修饰

RNA保护

RNA病毒

mRNA疫苗相关

无RNA酶试剂

Northern与原位检测

标记与检测

反转录

建库与高通量测序

多肽

>

多肽激素

活性多肽

多肽底物

竞争性多肽

重组蛋白

>

细胞因子

趋化因子

激素

抗体纯化

重组蛋白酶相关

其它重组蛋白

酶及活性检测

>

蛋白酶

生化酶

酶活性检测

蛋白样品制备

>

裂解及蛋白抽提

蛋白酶抑制剂

磷酸酶抑制剂

蛋白修饰酶抑制剂

蛋白表达与纯化

>

原核蛋白表达

蛋白纯化

蛋白修饰与标记

>

蛋白修饰与去修饰

蛋白标记

蛋白检测

>

蛋白定量

预制胶

蛋白分子量标准

蛋白电泳

Western检测

免疫沉淀

免疫染色

ELISA

新生蛋白质检测

细胞株

>

人细胞株

小鼠细胞株

其它种属细胞株

报告基因细胞株

HEK293T基因敲除细胞(库)

过表达稳转细胞株

细胞组织培养

>

培养液相关

血清

细胞组织消化

原代细胞培养

干细胞培养

内毒素检测与清除

支原体检测与清除

细胞冻存

3D培养

细胞粘附

细胞培养耗材

基因表达调控

>

细胞转染

病毒感染

人基因编辑慢病毒(库)

细胞样品制备

>

细胞组分分离

蛋白样品制备

RNA样品制备

DNA样品制备

细胞裂解样品

>

HEK293T基因敲除细胞RIPA裂解液

HEK293T基因敲除细胞Trizol裂解液

细胞增殖与分化

>

干细胞检测

细胞增殖

细胞分化

细胞衰老

细胞死亡与自噬

>

细胞凋亡

细胞坏死

细胞焦亡

自噬

细胞组织染色

>

普通染色

荧光染色

免疫染色

亚细胞研究

>

细胞膜

细胞核

线粒体

内质网

高尔基体

溶酶体

外泌体

植物原生质体

信号小分子检测

>

活性氧相关

一氧化氮相关

代谢小分子相关

钙离子等检测

转录调控

>

报告基因相关

EMSA相关

核转运

荧光探针

>

小分子荧光探针

细胞凋亡荧光探针

细胞器荧光探针

其它荧光探针

抗体制备

>

免疫佐剂

抗体纯化

抗体分析

二抗

>

HRP标记二抗

Biotin标记二抗

ALP标记二抗

荧光标记二抗

常用一抗

>

内参抗体

标签抗体

细胞器标志抗体

细胞标志抗体

对照IgG

敲除验证抗体

修饰抗体

荧光标记一抗

HRP标记一抗

IHC抗体

凋亡与自噬

>

Regulation of Apoptosis

Inhibition of Apoptosis

Death Receptor Signaling

Mitochondrial Control of Apoptosis

Autophagy Signaling

p53 Signaling

细胞代谢

>

Insulin Signaling

AMPK Signaling

Warburg Effect

Hypoxia Signaling

Glucose metabolism

Fatty Acid Metabolism

Endocrinology & Hormones

Transmembrane Transporters

Glutamine Metabolism

Other Metabolism

染色质/表观遗传/细胞周期

>

Protein Acetylation

Histone Methylation

DNA Methylation

Crosstalk Between Protein Modifications

G1/S Checkpoint

G2M/DNA Damage Checkpoint

RNA Editing/Splicing

Epigenetics

DNA Damage and Repair

Nuclear Receptor Signaling

Chromatin Regulation

Cell Cycle Related

细胞骨架/细胞外基质

>

Microtubule Dynamics

Actin Dynamics

Adherens Junction Dynamics

Cytoskeletal Signaling

免疫与炎症

>

Jak/Stat:IL-6 Signaling

NF-κB Signaling

Toll-Like Receptor Signaling

B Cell Receptor Signaling

T Cell Receptor Signaling

Cytokines

Chemokines

Tumor Necrosis Factors

Anti-infection

Interferons

T-Cell/B-Cell Activation

Macrophages

Complement Activation

Other Immune Pathways

MAPK与PI3K/Akt通路

>

MAPK/Erk in Growth & Differentiation

MAPK/Erk in GPCR Signaling

SAPK/JNK Signaling

p38 MAPK Signaling

PI3K/Akt Signaling

mTOR Signaling

MAP Kinase Signaling

Protein Tyrosine Kinase Signaling

神经科学

>

Amyloid & Neurofibrillary Tangles

Dopamine Signaling

Presynaptic Vesicle Transport

Neuronal Signaling

PKC、钙离子及脂信号通路

>

PKC Signaling

Phospholipid Signaling

Protein Posttranslational Modification

干细胞、发育与分化

>

Hippo Signaling

ESC Pluripotency and Differentiation

Stem Cell & Lineage Markers

Wnt/β-Catenin Signaling

Notch Signaling

Hedgehog Signaling

TGF-β Signaling

Angiogenesis

蛋白翻译、折叠和降解

>

Translational Regulation

eIF4E & p70 S6K Pathway

eIF2 Pathway

Ubiquitin/Proteasome

Protein Folding

肿瘤研究

>

Breast Cancer

Tumor Immunology

其它类别一抗

>

ErbB/HER Signaling

Organelle Markers

Coagulation

Microbiology

Growth Factors

Transcription Factors

Signal Transduction

Others

化合物库

>

药物库

天然化合物

凋亡与自噬

>

Regulation of Apoptosis

Inhibition of Apoptosis

Death Receptor Signaling

Mitochondrial Control of Apoptosis

Autophagy Signaling

细胞代谢

>

Insulin Signaling

AMPK Signaling

Warburg Effect

Hypoxia Signaling

Glucose Metabolism

Fatty Acid Metabolism

Transmembrane Transporters

染色质/表观遗传/细胞周期

>

Protein Acetylation

Histone Methylation

Crosstalk Between Protein Modifications

G1/S Checkpoint

G2M/DNA Damage Checkpoint

细胞骨架/细胞外基质

>

Microtubule Dynamics

Actin Dynamics

Adherens Junction Dynamics

免疫与炎症

>

Jak/Stat:IL-6 Signaling

NF-κB Signaling

Toll-Like Receptor Signaling

B Cell Receptor Signaling

T Cell Receptor Signaling

Antimicrobial Signaling

MAPK与PI3K/Akt通路

>

MAPK/Erk in Growth & Differentiation

MAPK/Erk in GPCR Signaling

SAPK/JNK Signaling

p38 MAPK Signaling

PI3K/Akt Signaling

mTOR Signaling

Protein Tyrosine Kinase Signaling

神经科学

>

Dopamine Signaling

Presynaptic Vesicle Trafficking

Neurotransmission

PKC、钙离子及脂信号通路

>

PKC Signaling

Phospholipid Signaling

干细胞、发育与分化

>

Wnt/β-Catenin Signaling

Notch Signaling

Hedgehog Signaling

TGF-β Signaling

蛋白翻译、折叠和降解

>

Translational Regulation

Ubiquitin/Proteasome

其它类别抑制剂激活剂

>

Nuclear Receptor Signaling

ErbB/HER Signaling

Angiogenesis

Coagulation

Anti COVID-19

生化试剂

>

糖类

氨基酸

多肽与蛋白

脂类

核酸相关

辅酶

代谢物

激素

维生素

微生物培养

显色剂

去垢剂

螯合剂

溶剂

氧化还原试剂

其它生化试剂

分离纯化试剂

造模试剂

染色剂

校正溶液

点击化学

常用酶

>

核酸酶

蛋白酶

其它常用酶

抗生素与防腐剂

>

哺乳动物细胞培养

细菌培养

真菌培养

防腐剂

消毒剂

缓冲试剂/缓冲液

>

缓冲试剂

pH缓冲液

电泳/转膜缓冲液

其它缓冲液

储存液

>

钠盐溶液

其它储存液

植物相关

>

植物培养

植物激素

植物样品制备

农杆菌与感受态

植物质粒

原生质体分离与转染

植物基因扩增与鉴定

微生物检测

>

微生物活性检测

试剂存放

>

离心管

离心管架

离心管盒

冻存盒

冰盒

蓝盖瓶

试剂瓶

配制与过滤

>

量筒量杯

搅拌棒搅拌子

PH试纸

滤纸

滤膜

滤器

吸液与移液

>

枪头

移液管

巴氏吸管

枪头盒

加样槽

磁性分离

适配器

注射器

移液器支架

微孔板及相关

>

96孔板

384孔板

96孔深孔板

酶标条

酶标条架

96孔点样板

UV板

超低吸附/3D培养

培养板

封板膜

细胞培养

>

培养皿

培养瓶

培养板

冻存管

移液管

离心管

细胞刮铲

细胞过滤

血清瓶

三角摇瓶

PCR耗材

>

PCR管

PCR排管和盖

PCR板

PCR板封板膜

PCR管盒

印迹与检测

>

PVDF膜

硝酸纤维素膜

尼龙膜

电泳及转印

洗膜盒

胶片

暗盒与增感屏

染色与检测

>

载玻片

盖玻片

存储盒

染色缸染色架

其它染色耗材

防护用品

>

手套

工作服

一次性帽子

一次性口罩

一次性鞋套

分离纯化

>

空柱管

超滤管

透析袋/透析袋夹

配件

切胶器

金属器械

>

剪刀

镊子

刀柄刀片

钳子

缝合针

小动物手术器械

注射器

其它耗材

>

研磨耗材

记号笔

其它

碧云天高品质仪器

>

核酸电泳

蛋白电泳

转印设备

样品处理

化学发光分析仪

电动移液器

金属浴

脱色摇床

混匀仪

离心机

搅拌器

其它

混合与破碎

>

脱色摇床

细菌培养摇床

漩涡振荡器

混匀仪

搅拌器

超声破碎仪

匀浆机

其它混合破碎仪器

温度控制

>

培养箱

水浴锅

干式恒温器

干燥箱、烘箱

其它温控设备

分离与浓缩

>

离心机

冷冻干燥机

离心浓缩仪

氮吹仪

旋转蒸发仪

泵与真空设备

>

真空泵及其它泵

蠕动泵

安全与防护

>

生物安全柜

超净工作台

危化品安全柜

通风橱

其它安全防护设备

清洗净化消毒

>

洗瓶机

洗板机

超声波清洗器

纯水仪

灭菌设备

冷冻冷藏

>

制冰机

低温冰箱

超低温冰箱

液氮罐

超低温冰箱、液氮罐分隔架

层析柜

核酸蛋白分析

>

PCR仪

电泳设备

蛋白转印设备

核酸提取设备

观察与成像

>

紫外分析仪

凝胶成像分析系统

光学检测

>

分光光度计

化学发光分析仪

酶标仪

其它光学检测仪器

组织与动物

>

切片机

组织包埋机

组织脱水机

染色机

其它动物实验仪器

理化分析

>

移液器类

天平

pH计

电导仪

氧化还原电位仪

溶氧仪

食品安全检测仪

小型计量仪表

>

定时器

核酸相关

>

引物合成

0.5元/nt起

RNA合成

520元/条起

基因合成

450元/条起

质粒构建

点突变423元起

定量PCR

50元/3复孔起

高通量测序

RNA-seq 998元起

SNP基因分型

4.5元/位点/样本起

质粒DNA制备

1mg 1430元起

DNA测序

15元/反应起

植物基因

PCR60元/3复孔起

环形RNA合成

RNA环化1288元/起

代为检测服务

10元/样起

蛋白相关

>

多肽合成

21元/氨基起

蛋白表达纯化

5000元/样起

抗体定制

兔多抗2800元/样起

Western Blot

500元/膜起

ELISA

代测300元/板起

免疫荧光

拍照30元/片起

免疫组化

60元/片起

免疫共沉淀

1800/样品起

蛋白质组学

1800元/样起

生化检测

代测10元/样起

代为检测服务

10元/样起

细胞相关

>

细胞增殖检测

600元/板起

细胞凋亡检测

100元/样起

CRISPR/Cas9

9999元/株起

病毒包装

腺病毒5590元起

细胞系STR鉴定

600元/样起

细胞株

648元/瓶起

石蜡切片

10元/切片起

支原体检测

280元/样起

代为检测服务

10元/样起

信号转导相关

>

代谢组学

900元/样起

外泌体检测

298元/样起

EMSA探针合成

638元/管起

代为检测服务

10元/样起

药物与疾病

>

化合物定制合成

1800元/样起

类器官

60元/基因/样起

动物药效学实验

肿瘤模型1200元起

代为检测服务

10元/样起

其它

>

SCI论文服务

润色0.6元/字起

整体课题服务

询价

COVID-19核酸检测

>

病毒qRT-PCR检测

病毒RNA提取

病毒RNA反转录

qPCR

等温扩增

PCR相关

阳性对照

清除环境污染

RNase Inhibitor

病毒保存

COVID-19机理研究

>

新冠病毒结构蛋白表达质粒

新冠病毒重组蛋白

新冠病毒结构蛋白抗体

主蛋白酶相关

ACE2相关

炎症和免疫反应监测

COVID-19药物研发

>

蛋白酶

蛋白酶荧光底物

抑制剂筛选试剂盒

FDA批准药物库化合物

COVID-19相关仪器

>

仪器

COVID-19技术服务

>

服务

订货电话

400-1683301

800-8283301

电话订货时间:

工作日9:00-17:00

订货邮件

order@beyotime.com

订货QQ

4001683301

微信在线咨询

订货须知

订单下载

碧云天订单.xls

资源下载

试剂>

细胞相关>

细胞增殖与分化>

细胞增殖

C0009

Y

MTT细胞增殖及细胞毒性检测试剂盒

一键复制产品信息

产品编号:

C0009S

代为检测》

产品包装:500次

选择包装

500次

2500次

说明书下载

253.00

10

价格:

¥

253.00

促销价:

¥

253.00

促销价:

¥

253.00

加入购物车

产品简介

使用说明

产品文件

相关产品

相关论文

产品问答

产品编号

产品名称

产品包装

产品价格

C0009S

MTT细胞增殖及细胞毒性检测试剂盒

500次

253.00元

C0009M

MTT细胞增殖及细胞毒性检测试剂盒

2500次

759.00元

MTT细胞增殖及细胞毒性检测试剂盒(MTT Cell Proliferation and

Cytotoxicity Assay Kit)是一种非常经典的细胞增殖和细胞毒性检测试剂盒,被广泛应用于细胞增殖和细胞毒性的检测。

MTT可以被线粒体内的一些脱氢酶还原生成结晶状的深紫色产物formazan(图1A)。在特定溶剂存在的情况下,可以被完全溶解(图1B)。然后通过酶标仪可以测定570nm波长附近的吸光度(图2)。细胞增殖越多越快,则吸光度越高;细胞毒性越大,则吸光度越低。

图1.MTT细胞增殖及细胞毒性检测试剂盒实测效果图。A.HeLa细胞加入使用本试剂盒配制的MTT溶液,在细胞培养箱内孵育4小时,显微镜下可见大量结晶状的深紫色产物formazan生成。B.不同数量HeLa细胞在MTT溶液(MTT solution)加入后4小时的效果图(上图)及深紫色产物formazan生成后加入Formazan溶解液(Formazan solvent),充分溶解后的效果图(下图)。

图2. 本试剂盒检测不同数量HeLa细胞的效果图。不同的检测条件下,实际读数会因标准品的配制、检测仪器等的不同而存在差异,图中数据仅供参考。

本试剂盒采用了独特的Formazan 溶解液配方,无需去除原有的培养液,可以直接加入Formazan溶解液溶解formazan。从而避免了由于去除培养液时formazan被部分去除而引起的误差。

本试剂盒本底低,灵敏度高,线性范围宽,使用方便。

碧云天各种细胞增殖和细胞毒性检测试剂盒的比较和选择,请参考 http://www.beyotime.com/cell-proliferation.htm。

本试剂盒C0009S包装可以测定500个样品,C0009M包装可以测定2500个样品。

包装清单:

产品编号

产品名称

包装

C0009S-1

MTT

25mg

C0009S-2

MTT溶剂

5ml

C0009S-3

Formazan溶解液

55ml

说明书

1份

产品编号

产品名称

包装

C0009M-1

MTT

125mg

C0009M-2

MTT溶剂

25ml

C0009M-3

Formazan溶解液

250ml

说明书

1份

保存条件:

4℃或-20℃保存,MTT需避光保存,一年有效;MTT配制成溶液后需-20℃避光保存;Formazan溶解液也可以室温保存。

注意事项:

由于使用96孔板进行检测,如果细胞培养时间较长,一定要注意蒸发的问

题。一方面,由于96孔板周围一圈最容易蒸发,可以采取弃用周围一圈的办法,改加PBS,水或培养液;另一方面

,可以把96孔板置于靠近培养箱内水源的地方,以缓解蒸发。

MTT溶剂在低温情况下会凝固,使用前请室温放置或20-25℃水浴温育片刻

至全部融解后使用。

MTT配制成溶液后为黄色,需避光保存,长时间光照会导致失效。当颜色变为灰绿色时,请勿使用。MTT溶液在4℃、冰浴等较低温度情况下会凝固,可以20-25℃水浴温育片刻至全部融解

后使用。

Formazan溶解液结冻或产生沉淀时可以室温或37℃水浴孵育以促进溶解,并且必须在全部溶解并混匀后使用。

加入Formazan溶解液后请适当轻轻混匀,但须注意避免产生泡沫。

本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。

为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

1. MTT溶液的配制:用5ml MTT溶剂溶解25mg MTT,配制成5mg/ml的MTT溶液。配制后即可使用,或直接-20℃避光保存,也可以根据需要适当分装后-20℃避光保存。

2. 通常细胞增殖实验每孔加入100微升2000个细胞,细胞毒性实验每孔加入100微升5000个细胞(具体每孔所用的细胞的数目,需根据细胞的大小,细胞增殖速度的快慢等决定)。按照实验需要,进行培养并给予0-10微升特定的药物刺激。

3. 每孔加入10微升MTT溶液,在细胞培养箱内继续孵育4小时。

4. 每孔加入100微升Formazan溶解液,适当混匀,在细胞培养箱内再继续孵育。直至在普通光学显微镜下观察发现formazan全部溶解。通常37℃孵育3-4小时左右,紫色结晶会全部溶解。如果紫色结晶较小较少,溶解的时间会短一些。如果紫色结晶较大较多,溶解的时间会长一些,此时为加速溶解可以适当振摇数次。

5. 在570nm测定吸光度(可参考图2)。如无570nm滤光片,可以使用560-600nm的滤光片。

物质安全数据单

输入右侧验证码点击下载:

下载

质检证书

输入批号搜寻COA

搜索

相关产品请点击如下按钮:

细胞增殖

细胞凋亡

细胞坏死

使用本产品的文献:

1. Shan Lei, Jing Zhang, Nicholas Thomas Blum, Meng Li, Dong-Yang Zhang, Weimin Yin, Feng Zhao, Jing Lin, Peng Huang

.

In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy

Nat Commun.

2022 Mar 11;13(1):1298. doi: 10.1038/s41467-022-29082-1.

(IF 12.121)

2. Chunfang Dai, Bin Wu, Yuxin Chen, Xiaohuan Li, Yanrui Bai, Yehong Du, Yayan Pang, Yu Tian Wang, Zhifang Dong

.

Aagab acts as a novel regulator of NEDD4-1-mediated Pten nuclear translocation to promote neurological recovery following hypoxic-ischemic brain damage

Cell Death Differ.

2021 Aug;28(8):2367-2384. doi: 10.1038/s41418-021-00757-4.

(IF 10.717)

3. Chenxu Ge, Jun Tan, Shaoyu Zhong, Lili Lai, Geng Chen, Junjie Zhao, Chao Yi, Longyan Wang, Liwei Zhou, Tingting Tang, Qiufeng Yang, Deshuai Lou, Qiang Li, Yekuan Wu, Linfeng Hu, Gang Kuang, Xi Liu, Bochu Wang, Minxuan Xu

.

Nrf2 mitigates prolonged PM2.5 exposure-triggered liver inflammation by positively regulating SIKE activity: Protection by Juglanin

Redox Biol.

2020 Sep;36:101645. doi: 10.1016/j.redox.2020.101645.

(IF 9.986)

4. Wei Shi, Yu Han, Shuge Sun, Yu Tang, Weishang Zhou, Xueying Du, Guangxu Liu

.

Immunotoxicities of microplastics and sertraline, alone and in combination, to a bivalve species: size-dependent interaction and potential toxication mechanism

J Hazard Mater.

2020 Sep 5;396:122603. doi: 10.1016/j.jhazmat.2020.122603.

(IF 9.038)

5. Dafei Xie, Song He, Lu Han, Lianlian Wu, Hai Huang, Huan Tao, Pingkun Zhou, Xunlong Shi, Hui Bai, Xiaochen Bo

.

Systematic optimization of host-directed therapeutic targets and preclinical validation of repositioned antiviral drugs

Brief Bioinform.

2022 May 13;23(3):bbac047. doi: 10.1093/bib/bbac047.

(IF 8.99)

6. Lu Z, Jiang X, Chen M, Feng L, Kang YJ

.

An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering.

Biofabrication.

2019 Aug 13 11(4):045012.

(IF 8.213)

7. Tao Qian, Chengmin Liu, Yanyan Ding, Chen Guo, Renwei Cai, Xiaoxia Wang, Rong Wang, Kuo Zhang, Li Zhou, Yi Deng, Chuanyue Wu, Ying Sun

.

PINCH-1 interacts with myoferlin to promote breast cancer progression and metastasis

Oncogene.

2020 Mar;39(10):2069-2087. doi: 10.1038/s41388-019-1135-5.

(IF 7.971)

8. Qian T, Liu C, Ding Y, Guo C, Cai R, Wang X, Wang R, Zhang K, Zhou L, Deng Y, Wu C, Sun Y

.

PINCH-1 interacts with myoferlin to promote breast cancer progression and metastasis.

Oncogene.

2020 Mar 39(10):2069-2087.

(IF 7.971)

9. Chen Z, Ye X, Tang N, Shen S, Li Z, Niu X, Lu S, Xu L.

.

The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer.

BRIT J PHARMACOL.

2014 Jul;171(13):3196-211.

(IF 7.73)

10. Li S, Xie A, Li H, Zou X, Zhang Q

.

A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease.

J Control Release.

2019 Dec 28 316:66-78.

(IF 7.727)

11. Qixiong Zhang, Shanshan Li, Jiandong Ren, Xia He, Houkui Shi, Fuzhong Zhang, Hui Li, Rongsheng Tong

.

ROS-triggered nanoinducer based on dermatan sulfate enhances immunogenic cell death in melanoma

J Control Release.

2022 Aug:348:22-33. doi: 10.1016/j.jconrel.2022.04.026.

(IF 7.727)

12. Xie X, Ma L, Zhou Y, Shen W, Xu D, Dou J, Shen B, Zhou C

.

Polysaccharide enhanced NK cell cytotoxicity against pancreatic cancer via TLR4/MAPKs/NF-κB pathway in vitro/vivo.

CARBOHYD POLYM.

2019 Dec 1 225:115223.

(IF 7.182)

13. Shanshan Li, Fuzhong Zhang, Yang Yu, Qixiong Zhang

.

A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy

CARBOHYD POLYM.

2020 May 1;235:115983. doi: 10.1016/j.carbpol.2020.115983.

(IF 7.182)

14. Weizhen Liu, Xiangyu Zeng, Yuping Yin, Chengguo Li, Wenchang Yang, Wenze Wan, Liang Shi, Guobin Wang, Kaixiong Tao, Peng Zhang

.

Targeting the WEE1 kinase strengthens the antitumor activity of imatinib via promoting KIT autophagic degradation in gastrointestinal stromal tumors

Gastric Cancer.

2020 Jan;23(1):39-51. doi: 10.1007/s10120-019-00977-1.

(IF 7.088)

15. Liu W, Zeng X, Yin Y, Li C, Yang W, Wan W, Shi L, Wang G, Tao K, Zhang P

.

Targeting the WEE1 kinase strengthens the antitumor activity of imatinib via promoting KIT autophagic degradation in gastrointestinal stromal tumors.

Gastric Cancer.

2020 Jan 23(1):39-51.

(IF 7.088)

16. Zan Y, Wang B, Liang L, Deng Y, Tian T, Dai Z, Dong L

.

MicroRNA-139 inhibits hepatocellular carcinoma cell growth through down-regulating karyopherin alpha 2.

J EXP CLIN CANC RES.

2019 May 2 38(1):182.

(IF 7.068)

17. Guan X, Tang Y, Zha S, Han Y, Shi W, Ren P, Yan M, Pan Q, Hu Y, Fang J, Zhang J, Liu G

.

Exogenous Ca2+ mitigates the toxic effects of TiO2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa.

Environ Pollut.

2019 Sep 252(Pt B):1764-1771.

(IF 6.792)

18. Na Li, Xue-Lian Liu, Fa-Li Zhang, Yu Tian, Min Zhu, Ling-Yu Meng, Paul W Dyce, Wei Shen, Lan Li

.

Whole-transcriptome analysis of the toxic effects of zearalenone exposure on ceRNA networks in porcine granulosa cells

Environ Pollut.

2020 Jun;261:114007. doi: 10.1016/j.envpol.2020.114007.

(IF 6.792)

19. Shi W, Han Y, Guan X, Rong J, Su W, Zha S, Tang Y, Du X, Liu G

.

Fluoxetine suppresses the immune responses of blood clams by reducing haemocyte viability, disturbing signal transduction and imposing physiological stress.

Sci Total Environ.

2019 Sep 15 683:681-689.

(IF 6.551)

20. Shuge Sun, Wei Shi, Yu Tang, Yu Han, Xueying Du, Weishang Zhou, Yuan Hu, Chaosheng Zhou, Guangxu Liu

.

Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms

Sci Total Environ.

2020 Aug 1;728:138852. doi: 10.1016/j.scitotenv.2020.138852.

(IF 6.551)

21. Wenhui Zha, Shuang Guan, Ning Liu, Yang Li, Yuan Tian, Yang Chen, Yan Wang, Fuju Wu

.

Let-7a inhibits Bcl-xl and YAP1 expression to induce apoptosis of trophoblast cells in early-onset severe preeclampsia

Sci Total Environ.

2020 Nov 25;745:139919. doi: 10.1016/j.scitotenv.2020.139919.

(IF 6.551)

22. Zhong Y, Zhang XH, Chen J, Chi Z, Sun B, Li Y, Austin B.

.

Overexpression, purification, characterization, and pathogenicity of Vibrio harveyi hemolysin VHH.

Infect Immun.

2006 Oct;74(10):6001-5.

(IF 3.201)

23. Li QT, Zhu YZ, Chu JY, Dong K, He P, Feng CY, Hu BY, Zhang SM, Guo XK.

.

Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine.

Acta Pharmacol Sin.

2006 Nov;27(11):1487-94.

(IF 5.064)

24. Fan QY, Liu QH, Li CP, Wang J.

.

Experimental study on the effect of protoporphyrin disodium in vitro on anti-hbv.

《现代预防医学》.

2007;34(19):3614-8.

25. Yang H, Chen J, Yang G, Zhang XH, Li Y.

.

Mutational analysis of the zinc metalloprotease EmpA of Vibrio anguillarum.

FEMS Microbiol Lett.

2007 Feb;267(1):56-63.

(IF 1.987)

26. Yang H, Chen J, Yang G, Zhang XH, Li Y, Wang M.

.

Characterization and pathogenicity of the zinc metalloprotease empA of Vibrio

Curr Microbiol.

2007 Mar;54(3):244-8.

(IF 1.746)

27. Li ZJ, Zhang K, Lou SQ, Zheng YF.

.

A Cellular Study on Cytotoxicity of Magnesium- calcium Alloy.

《中国骨与关节损伤杂志》.

2007 Sep;22(9):740-742.

28. Xu J, Sun Y, Huang J, Chen C, Liu G, Jiang Y, Zhao Y, Jiang Z.

.

Photokilling cancer cells using highly cell-specific antibody-TiO(2) bioconjugates and electroporation.

Bioelectrochemistry.

2007 Nov;71(2):217-22.

(IF 4.722)

29. Bai L, Pang WJ, Yang YJ, Yang GS.

.

Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes.

Mol Cell Biochem.

2008 Jan;307(1-2):129-40.

(IF 2.795)

30. Zhou XM, Xu GX, Zhao DM.

.

In vitro effect of prion peptide PrP 106-126 on mouse macrophages: Possible role of macrophages in transport and proliferation for prion protein.

MICROB PATHOGENESIS.

2008 Feb;44(2):129-34.

(IF 2.914)

31. Zhan XD, Wang KX, Li CP.

.

Studies on Anti2HBV Effect in vitro of Snail Polysaccharide.

《中国验方学学报》.

2008

Mar;14(3):66-72.

32. LI Y, GUAN L, YANG J, ZHOU X, YIN X, ZHAO D.

.

Influence of PrP 106―126 on expression of laminin and fibronectin in astrocyte.

CHINESE SCI BULL.

2008 Jul;53(14)2160-4.

(IF 1.649)

33. Tian Y, Wang Q, Liu Q, Ma Y, Cao X, Zhang Y.

.

Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus.

Arch Microbiol.

2008 Nov;190(5):585-94.

(IF 1.884)

34. Zhang Y, Jiang W, Fan Y, Wen J, Hao W, Qian M.

.

Engineering enhancement of the immune response to HBV DNA vaccine in mice by the use of LIGHT gene adjuvant.

J Virol Methods.

2008 Nov;153(2):142-8.

(IF 1.786)

35. Fan Y, Jiang WZ, Wen JJ, Hao WL, Du JN, Liu X, Qian M.

.

B7-DC-silenced dendritic cells induce stronger anti-HBV immunity in transgenic mice.

Arch Virol.

2009;154(11):1813-21.

(IF 2.243)

36. Zhang WW, Hu YH, Wang HL, Sun L.

.

Identification and characterization of a virulence-associated protease from a pathogenic Pseudomonas fluorescens strain.

Vet Microbiol.

2009 Oct 20;139(1-2):183-8.

(IF 3.03)

37. Wang YN, Wu W, Chen HC, Fang H.

.

Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation.

J Dermatol Sci.

2010;58(1):19-27.

(IF 3.681)

38. Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao YX, Dong JC.

.

Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway.

Eur J Pharmacol.

2010;642(1-3):146-53.

(IF 3.263)

39. Chen R, Huang C, Ke Q, He C, Wang H, Mo X.

.

Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications.

COLLOID SURFACE B.

2010;79(2):315-25.

(IF 4.389)

40. Hu YH, Zheng WJ, Sun L.

.

Identification and molecular analysis of a ferritin subunit from red drum (Sciaenops ocellatus).

FISH SHELLFISH IMMUN.

2010;28(4):678-86.

(IF 3.298)

41. Cheng S, Zhang WW, Zhang M, Sun L.

.

Evaluation of the vaccine potential of a cytotoxic protease and a protective immunogen from a pathogenic Vibrio harveyi strain.

Vaccine.

2010;28(4):1041-7.

(IF 3.143)

42. Sun K, Jiao XD, Zhang M, Sun L.

.

DNA adenine methylase is involved in the pathogenesis of Edwardsiella tarda.

Vet Microbiol.

2010 Feb 24;141(1-2):149-54.

(IF 3.03)

43. Zheng WJ, Hua YH, Zhang M, Sun L.

.

Analysis of the expression and antioxidative property of a peroxiredoxin 6 from Scophthalmus maximus.

FISH SHELLFISH IMMUN.

2010

Aug;29(2):305-11.

(IF 3.298)

44. Su Y, Li X, Liu Y, Su Q, Qiang ML, Mo X.

.

Encapsulation and Controlled Release of Heparin from Electrospun Poly(L-Lactide-co-epsilon-Caprolactone) Nanofibers.

J BIOMAT SCI-POLYM E.

2011;22(1-3):165-77.

(IF 2.69)

45. Qian YF, Zhang KH, Chen F, Ke QF, Mo XM.

.

Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds.

J BIOMAT SCI-POLYM E.

2011;22(8):1099-113.

(IF 2.69)

46. Zha YY, Yang B, Tang ML, Guo QC, Chen JT, Wen LP, Wang M.

.

Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability.

INT J NANOMED.

2012;7:3099-109.

(IF 5.115)

47. Li X, Lin L, Kanjwal MA, Chronakis IS, Liu S, Chen Y.

.

Preparing photochromic nanofibers and animal cells using a photochromic compound of 1',3',3'-trimethyl-6-nitrospiro (2H-1-benzopyran-2,2'-indoline).

COLLOID SURFACE B.

2012 Jan 1;89:67-72.

(IF 4.389)

48. Wei D, Sun N, Nan G, Wang Y, Liu HQ, Peeters B, Chen ZN, Bian H.

.

Construction of recombinant Newcastle disease virus Italien strain for oncolytic virotherapy of tumors.

Hum Gene Ther.

2012 Jul;23(7):700-10.

(IF 4.273)

49. Ma X, Zhang S, Zhou J, Chen B, Shang Y, Gao T, Wang X, Xie H, Chen F.

.

Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiationin vitro and in vivo.

J TISSUE ENG REGEN M.

2012 Aug;6(8):598-613.

(IF 3.078)

50. Wang K, Ping S, Huang S, Hu L, Xuan H, Zhang C, Hu F.

.

Molecular mechanisms underlying the in vitro anti-inflammatory effects of a flavonoid-rich ethanol extract fromchinese propolis (poplar type).

EVID-BASED COMPL ALT.

2013;2013:127672.

(IF 1.813)

51. Li Z, Gao Q.

.

Induction of apoptosis in HT-29 cells by quercetin through mitochondria-mediated apoptotic pathway.

Animal Cells and Systems.

2013; 17(3):147-153.

(IF 0.549)

52. Hu Z, Xing Y, Qian Y, Chen X, Tu J, Ren L, Wang K, Chen Z.

.

Anti-radiation damage effect of polyethylenimine as a toll-like receptor 5 targeted agonist.

J Radiat Res.

2013 Mar 1;54(2):243-50.

(IF 1.95)

53. Du Q, Hu B, An HM, Shen KP, Xu L, Deng S, Wei MM.

.

Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells.

Oncol Rep.

2013 May;29(5):1851-8.

(IF 3.417)

54. Ma JF, Von Kalle M, Plautz Q, -M Xu F, Singh L, Wang L.

.

Relaxin promotes in vitro tumour growth, invasion and angiogenesis of human Saos-2 osteosarcoma cells byAKT/VEGF pathway.

EUR REV MED PHARMACO.

2013 May;17(10):1345-50.

(IF 3.024)

55. Hao Y, Ren J, Liu J, Yang Z, Liu C, Li R, Su Y.

.

Immunological changes of chronic oral exposure to depleted uranium in mice.

Toxicology.

2013 Jul 5;309:81-90.

(IF 4.099)

56. Shi F, Yang Y, Kouadir M, Fu Y, Yang L, Zhou X, Yin X, Zhao D.

.

Inhibition of phagocytosis and lysosomal acidification suppresses neurotoxic prion peptide-induced NALP3inflammasome activation in BV2 microglia.

J Neuroimmunol.

2013 Jul 15;260(1-2):121-5.

(IF 3.125)

57. Wang YT, Lu XM, Zhu F, Zhao M.

.

The preparation of gold nanoparticles and evaluation of their immunological function effects on rats.

BIO-MED MATER ENG.

2014;24(1):885-92.

(IF 1.243)

58. Yang C, Fan J, Zhuang Z, Fang Y, Zhang Y, Wang S.

.

The role of NAD(+)-dependent isocitrate dehydrogenase 3 subunit α in AFB1 induced liver lesion.

Toxicol Lett.

2014 Jan 30;224(3):371-9.

(IF 3.569)

59. Liu Y, Liu H, Zou J, Zhang B, Yuan Z.

.

Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway.

Virology.

2014 Jan 5;448:15-25.

(IF 2.819)

60. Hao Y, Ren J, Liu C, Li H, Liu J, Yang Z, Li R, Su Y.

.

Zinc Protects Human Kidney Cells from Depleted Uranium-induced Apoptosis.

BASIC CLIN PHARMACOL.

2014 Mar;114(3):271-80.

(IF 2.651)

61. Ma X, Zhao T, Ouyang T, Xin S, Ma Y, Chang M.

.

Propranolol enhanced adipogenesis instead of induction of apoptosis of hemangiomas stem cells.

INT J CLIN EXP PATHO.

2014 Jun 15;7(7):3809-17.

(IF 0.252)

62. Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang T, Shen Y, Dong X, Zheng N, Lu J, Ying S, Shen Y.

.

Inhibition of Hepatitis B virus replication by SAMHD1.

BIOCHEM BIOPH RES CO.

2014 Aug 8;450(4):1462-8.

(IF 2.985)

63. Shi JX, Li JS, Hu R, Shi Y, Su X, Guo XJ, Li XM.

.

Tristetraprolin is involved in the glucocorticoid-mediated interleukin 8 repression.

Int Immunopharmacol.

2014 Oct;22(2):480-5.

(IF 3.943)

64. Jiang LM, Nie SP, Zhou HL, Huang DF, Xie MY.

.

Carboxymethylation enhances the maturation-inducing activity in dendritic cells of polysaccharide from the seeds of Plantago asiatica L.

Int Immunopharmacol.

2014 Oct;22(2):324-31.

(IF 3.943)

65. Lu W, Zuo Y, Feng Y, Zhang M.

.

SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer.

TUMOR BIOL .

2014 Nov;35(11):10699-705.

(IF 3.65)

66. Yang S, Hao J, Guo X, Huang H, Cui R, Lin G, Li C, Dong J, Sun B.

.

Eu 3+: Y 2 O 3@ CNTs—a rare earth filled carbon nanotube nanomaterial with low toxicity and good photoluminescence properties.

RSC Advances.

2015;5(28):21634-9.

(IF 3.049)

67. Peng Y, Fu ZZ, Guo CS, Zhang YX, Di Y, Jiang B, Li QW.

.

Effects and Mechanism of Baicalin on Apoptosis of Cervical Cancer HeLa Cells In -vitro.

Iran J Pharm Res.

2015 Winter;14(1):251-61.

(IF 1.505)

68. Jin H F, Liu X W, Tang Y M, Tang L J, Wang Y L, Du C Q.

.

Effects of total flavones from Dendranthema morifolium on vasocontraction and proliferation of vascular smooth muscle cells.

Molecular Medicine Reports.

2015 Thu;13(1):989-93.

(IF 1.851)

69. Liu XD, Zhang FB, Zhou B, Shan H, Chen PY.

.

Effect of sonication on different quality parameters of Pinus massoniana pollen.

Ultrason Sonochem.

2015 Jan;22:174-81.

(IF 6.513)

70. Zhang B, Peng X, Li G, Xu Y, Xia X, Wang Q.

.

Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells.

Toxicon.

2015 Feb;94:1-7.

(IF 2.201)

71. Liu L, Lear Z, Hughes DJ, Wu W, Zhou EM, Whitehouse A, Chen H, Hiscox JA.

.

Resolution ofthe cellular proteome ofthe nucleocapsid protein froma highly pathogenic isolate of porcinereproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology.

Vet Microbiol.

2015 Mar 23;176(1-2):109-19.

(IF 3.03)

72. Peng X, Zhuang DD, Guo QS.

.

Induction of S phase arrest and apoptosis by ethyl acetate extract from Tetrastigma hemsleyanum in humanhepatoma HepG2 cells.

TUMOR BIOL .

2015 Apr;36(4):2541-50.

(IF 3.65)

73. Chen X, Bo L, Zhao X, Chen Q.

.

MicroRNA-133a inhibits cellproliferation, colony formation ability, migration and invasion by targeting matrixmetallopeptidase 9 in hepatocellular carcinoma.

Mol Med Rep.

2015 May;11(5):3900-7.

(IF 2.1)

74. Liu S, Huang H.

.

Effects of epicatechin gallate (ECG) on fetal bovine serum (FBS)-induced steatosis in human liver cell line L02 and 2, 2′-azobis (2-amidinopropane)(AAPH)-induced oxidative stress in human erythrocytes.

European Food Research and Technology.

2015 Jun 26;16(7):14511-25.

(IF 2.056)

75. Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, Jiang Y, Lv Q, Xiao X.

.

MiR-21 Protected Cardiomyocytes against Doxorubicin-Induced Apoptosis by Targeting BTG2.

Int J Mol Sci.

2015 Jun 26;16(7):14511-25.

(IF 4.556)

76. Peng X, Zhang T, Zhang J.

.

Effect of subculture times on genetic fidelity, endogenous hormone level and pharmaceutical potential of Tetrastigma hemsleyanum callus.

PLANT CELL TISS ORG.

2015 Jul;122(1):67-77.

(IF 2.196)

77. Ma Q, Chen Z, Jia G, Lu X, Xie X, Jin W.

.

The histone demethylase PHF8 promotes prostate cancer cell growth by activating the oncomiR miR-125b.

ONCOTARGETS THER.

2015 Aug 10;8:1979-88.

(IF 3.337)

78. Wu F, Song H, Zhang Y, Zhang Y, Mu Q, Jiang M, Wang F, Zhang W, Li L, Li H, Wang Y, Zhang M, Li S, Yang L, Meng Y, Tang D.

.

Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro andin Zebrafish Embryos In Vivovia Activation of the ERK Signaling Pathway.

PLoS One.

2015 Aug 4;10(8):e0134662.

(IF 2.74)

79. Wang JJ, Sun L.

.

Ferritin M of Paralichthys olivaceus possesses antimicrobial and antioxidative properties.

Fish Physiol Biochem.

2015 Aug;41(4):951-9.

(IF 2.242)

80. Jin Y, Liu L, Zhang S, He R, Wu Y, Chen G, Fu Z.

.

Cadmium exposure to murine macrophages decreases their inflammatory responses and increases theiroxidative stress.

Chemosphere.

2015 Sep 9;144:168-75.

(IF 5.778)

81. Zhu G, Chen X, Mao Y, Kang L, Ma X, Jiang Y.

.

Characterization of annexin A2 in chicken follicle development: Evidence for its involvement in angiogenesis.

Anim Reprod Sci.

2015 Oct;161:104-11.

(IF 1.66)

82. Chen J J, Gao L J, Liu T J.

.

Photodynamic therapy with a novel porphyrin-based photosensitizer against human gastric cancer.

ONCOL LETT.

2015 Nov;23:775-81.

(IF 2.311)

83. Yin C, Liang Y, Zhang J, Ruan G, Li Z, Pang R, Pan X.

.

Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through EnhancingAngiogenesis in Tree Shrews.

Stem Cells Int.

2016;2016:9742034.

(IF 3.869)

84. Chen H, Li Y, Shi J, Song W.

.

Role and mechanism of insulin-like growth factor 2 on the proliferation of human trophoblasts in vitro.

J OBSTET GYNAECOL RE.

2016 Jan;42(1):44–51 .

(IF 1.392)

85. Wang S, Zhou J, Kang W, Dong Z, Wang H.

.

Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model.

BOSNIAN J BASIC MED.

2016 Jan 15;16(2):145-50.

(IF 2.05)

86. Yan Y, Jiang Y.

.

RACK1 affects glioma cell growth and differentiation through the CNTN2-mediated RTK/Ras/MAPKpathway.

Int J Mol Med.

2016 Jan;37(1):251-7.

(IF 3.098)

87. Zhou H, Li J, Yuan J, Chen T, Deng H, Zhang J, Zeng H, Shan Z, Chen W.

.

Effects and mechanism of arsenic trioxide in combination with rmhTRAIL in multiple myeloma.

Exp Hematol.

2016 Feb;44(2):125–31.

(IF 2.82)

88. Qin W, Xie W, Yang X, Xia N, Yang K.

.

Inhibiting microRNA-449 Attenuates Cisplatin-Induced Injury in NRK-52E Cells Possibly via Regulatingthe SIRT1/P53/BAX Pathway.

MED SCI MONITOR.

2016 Mar 12;22:818-23.

(IF 1.918)

89. Li JP, Ma Q, Chen CM.

.

Mitochondrial dysfunction in resveratrol-induced apoptosis in QGY-7701 cells.

GENET MOL RES.

2016 Mar 24;15(1). doi: 10.4238/gmr.15017490.

(IF 1.013)

90. Hu W, Zhang W, Li F, Guo F, Chen A .

.

miR-139 is up-regulated in osteoarthritis and inhibits chondrocyte proliferation and migration possiblyvia suppressing EIF4G2 and IGF1R.

BIOCHEM BIOPH RES CO.

2016 May 27;474(2):296-302.

(IF 2.985)

91. Xu H, Jin L, Chen Y, Li J.

.

Downregulation of microRNA-429 protects cardiomyocytes against hypoxia-induced apoptosis byincreasing Notch1 expression.

Int J Mol Med.

2016 Jun;37(6):1677-85.

(IF 3.098)

92. Luo SW, Wang WN, Sun ZM, Xie FX, Kong JR, Liu Y, Cheng CH.

.

Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2 associated X protein)Bax in the orange-spotted grouper (Epinephelus coioides) after the Vibrio alginolyticus challenge.

Dev Comp Immunol.

2016 Jul;60:66-79.

(IF 3.192)

93. Du X, Li Q, Pan Z, Li Q.

.

Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression inporcine ovarian granulosa cells.

Reproduction.

2016 Aug;152(2):161-9.

(IF 3.206)

94. Du Y, Zhang S, Yu T, Du G, Zhang H, Yin Z .

.

Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation.

Mol Med Rep.

2016 Sep;14(3):2473-82.

(IF 2.1)

95. Gong K, Qu B, Liao D, Liu D, Wang C, Zhou J, Pan X.

.

MiR-132 regulates osteogenic differentiation via downregulating Sirtuin1 in a peroxisome proliferator-activated receptor β/δ-dependent manner.

BIOCHEM BIOPH RES CO.

2016 Sep 9;478(1):260-7.

(IF 2.985)

96. Wang X, Cao H, Guan XL, Long LH, Hu ZL, Ni L, Wang F, Chen JG, Wu PF.

.

Sulfite triggers sustained calcium overload in cultured cortical neurons via a redox-dependentmechanism.

Toxicol Lett.

2016 Sep 6;258:237-48.

(IF 3.569)

97. Cui H, Ma C, Lin L.

.

Co-loaded proteinase K/thyme oil liposomes for inactivation of Escherichia coli O157:H7 biofilms oncucumber.

Food Funct.

2016 Sep 14;7(9):4030-4040.

(IF 4.171)

98. Jin Y, Chen G, Fu Z.

.

Effects of TBEP onthe induction of oxidative stress and endocrine disruption in Tm3 Leydig cells.

Environ Toxicol.

2016 Oct;31(10):1276–86 .

(IF 3.118)

99. Yu P, Guo Y, Yusufu M, Liu Z, Wang S, Yin X, Peng G, Wang L, Zhao X, Guo H, Huang T, Liu C.

.

Decreased expression of EZH2 reactivates RASSF2A by reversal of promoter methylation in breastcancer cells.

Cell Biol Int.

2016 Oct;40(10):1062-70.

(IF 2.571)

100. Zhang C, Liang W, Zhang W, Li C.

.

Characterization of a metalloprotease involved in Vibrio splendidus infection in the sea cucumber,Apostichopus japonicus.

MICROB PATHOGENESIS.

2016 Dec;101:96-103.

(IF 2.914)

101. Wang Y, Wang X, Shang J, Liu H, Yuan Y, Guo Y, Huang B, Zhou Y.

.

Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC andNHS: an in vivo study.

Eur Spine J.

2016 Dec 21. doi: 10.1007/s00586-016-4898-1. [Epub ahead of print]

(IF 2.458)

102. Wang X, Mu G, Dang R, Yang Z.

.

Up-regulation of IL-10 upon PRRSV vaccination impacts on the immune response against CSFV.

Vet Microbiol.

2016 Dec 25;197:68-71.

(IF 3.03)

103. Li S, Liu X, Lei J, Yang J, Tian P, Gao Y.

.

Crocin Protects Podocytes Against Oxidative Stress and Inflammation Induced by High Glucose Through Inhibition of NF-κB.

CELL PHYSIOL BIOCHEM.

2017;42(4):1481-1492.

(IF 5.5)

104. Zhang X, Wu D, Aldarouish M, Yin X, Li C, Wang C.

.

ETS-1: A potential target of glycolysis for metabolic therapy by regulating glucose metabolism inpancreatic cancer.

Int J Oncol.

2017 Jan;50(1):232-240.

(IF 3.899)

105. Wu J, Liu Z, Su J, Pan N, Song Q.

.

Anti-inflammatory activity of3β-hydroxycholest-5-en-7-one isolated from Hippocampustrimaculatus leach via inhibiting iNOS,TNF-α,and1L-1βof LPS induced RAW 264.7 macrophage cells.

Food Funct.

2017 Feb 22;8(2):788-795.

(IF 4.171)

106. Liu J, Li Y, Luo M, Yuan Z, Liu J.

.

MicroRNA-214 inhibits the osteogenic differentiation of human osteoblasts throughthe directregulation of baculoviral IAP repeat-containing 7.

Exp Cell Res.

2017 Feb 15;351(2):157-162.

(IF 3.383)

107. Fang F, Song T, Zhang T, Cui Y, Zhang G, Xiong Q.

.

MiR-425-5p promotes invasion and metastasis of hepatocellular carcinoma cells through SCAI-mediated dysregulation of multiple signaling pathways.

ONCOTARGET.

2017 May 9;8(19):31745-31757.

(IF 5.168)

108. Huang R, Hu Z, Feng Y, Yu L, Li X.

.

The Transcription Factor IRF6 Co-Represses PPARγ-Mediated Cytoprotection in IschemicCerebrovascular Endothelial Cells.

SCI REP-UK.

2017 May 19;7(1):2150.

(IF 3.998)

109. Liu X, Liu H, Zhai Y, Li Y, Zhu X, Zhang W.

.

Laminarin protects against hydrogen peroxide-induced oxidative damage in MRC-5 cellspossibly via regulating NRF2.

PeerJ.

2017 Jul 31;5:e3642.

(IF 2.379)

110. Zou Z, Meng Z, Ma C, Liang D, Sun R, Lan K.

.

Guanylate-Binding Protein 1 Inhibits Nuclear Delivery of Kaposi's Sarcoma-AssociatedHerpesvirus Virions by Disrupting Formation of Actin Filament.

J Virol.

2017 Jul 27;91(16). pii: e00632-17.

(IF 4.501)

111. Liu Y, Feng J, Zhao M, Wu J, Fan J, Wen Q, Xu J, Zhang J, Fu S, Wang B, Lu Y, Xiong K, Xiang L, Zhang Y, Yang L.

.

JNK pathway inhibition enhances chemotherapeutic sensitivity to Adriamycin in nasopharyngealcarcinoma cells.

Oncol Lett.

2017 Aug;14(2):1790-1794.

(IF 2.311)

112. Liu Y, Tang J, Gao X, Wang M, Shen J, You X.

.

Effect of retinoid X receptor-α nuclear export inhibition on apoptosis of neurons in vivo and in vitro.

Mol Med Rep.

2017 Aug;16(2):2037-2044.

(IF 2.1)

113. Zhang K, Sun W, Zhang L, Xu X, Wang J, Hong Y

.

miR-499 Ameliorates Podocyte Injury by Targeting Calcineurin in Minimal Change Disease.

Am J Nephrol.

2018;47(2):94-102.

(IF 3.411)

114. Lin J, Wang C, Liang W, Zhang J, Zhang L, Lv H, Dong W, Zhang Y

.

Rab1A is required for assembly of classical swine fever virus particle.

Virology.

2018 Jan 15;514:18-29.

(IF 2.819)

115. Yu P, Shen X, Yang W, Zhang Y, Liu C, Huang T

.

ZEB1 stimulates breast cancer growth by up-regulating hTERT expression.

BIOCHEM BIOPH RES CO.

2018 Jan 22;495(4):2505-2511.

(IF 2.985)

116. Hu P, Cheng B, He Y, Wei Z, Wu D, Meng Z

.

Autophagy suppresses proliferation of HepG2 cells via inhibiting glypican-3/wnt/β-catenin signaling.

ONCOTARGETS THER.

2018 Jan 4;11:193-200.

(IF 3.337)

117. Cui H, Bai M, Yuan L, Surendhiran D, Lin L

.

Sequential effect of phages and cold nitrogen plasma against Escherichia coli O157:H7 biofilms on different vegetables.

Int J Food Microbiol.

2018 Mar 2;268:1-9.

(IF 4.187)

118. Zhao R, Guo Z, Zhang R, Deng C, Xu J, Dong W, Hong Z, Yu H, Situ H, Liu C, Zhuang G

.

Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation.

J Appl Toxicol.

2018 May;38(5):678-687.

(IF 2.997)

119. Lin W, Xu G

.

Over-expression of CNTF in bone marrow mesenchymal stem cells protects RPE cells from short-wavelength, blue-light injury.

IN VITRO CELL DEV-AN.

2018 May;54(5):355-365.

(IF 1.665)

120. Xue YZB, Niu YM, Tang B, Wang CM

.

PCL/EUG scaffolds with tunable stiffness can regulate macrophage secretion behavior.

PROG BIOPHYS MOL BIO.

2018 May 21. pii: S0079-6107(17)30320-6.

(IF 2.175)

121. Zou C, Liu G, Liu S, Liu S, Song Q, Wang J, Feng Q, Su Y, Li S

.

Cucurbitacin B acts a potential insect growth regulator by antagonizing 20-hydroxyecdysone activity.

Pest Manag Sci.

2018 Jun;74(6):1394-1403.

(IF 3.75)

122. Ding H, Liu J, Liu B, Zeng Y, Chen P, Su Y

.

Long noncoding RNA PVT1 inhibits interferon-α mediated therapy for hepatocellular carcinoma cells by interacting with signal transducer and activator of transcription 1.

BIOCHEM BIOPH RES CO.

2018 Jun 12;500(4):973-980.

(IF 2.985)

123. Tang Y, Jin S, Li X, Li X, Hu X, Chen Y, Huang F, Yang Z, Yu F, Ding G

.

Physicochemical Properties and Biocompatibility Evaluation of Collagen from the Skin of Giant Croaker (Nibea japonica).

Mar Drugs.

2018 Jun 29;16(7). pii: E222.

(IF 4.073)

124. Zhu X, Wu T, Chi Y, Ge Y, Wu B, Zhou M, Zhu F, Ji M, Cui L

.

Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells.

Virology.

2018 Jun 7;521:69-76.

(IF 2.819)

125. Weikang Liang, Weiwei Zhang, Yina Shao, Xuelin Zhao, Chenghua Li

.

Dual Functions of a 4-hydroxyphenylpyruvate Dioxygenase for Vibrio Splendidus Survival and Infection

MICROB PATHOGENESIS.

2018 Jul;120:47-54. doi: 10.1016/j.micpath.2018.04.055.

(IF 2.914)

126. Yi Gu, Nan Yang, Leping Yin, Chao Feng, Tong Liu

.

Inhibitory Roles of miR‑9 on Papillary Thyroid Cancer Through Targeting BRAF

Mol Med Rep.

2018 Jul;18(1):965-972. doi: 10.3892/mmr.2018.9010.

(IF 2.1)

127. Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Jiang YM, Chen P, Pan MH, Lu C

.

C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection.

J Insect Physiol.

2018 Jul;108:54-60.

(IF 2.246)

128. Chen Z, Ding Z, Zhang G, Tian L, Zhang X

.

Construction of Thermo-Responsive Elastin-Like Polypeptides (ELPs)-Aggregation-Induced-Emission (AIE) Conjugates for Temperature Sensing.

Molecules.

2018 Jul 14;23(7). pii: E1725.

(IF 3.267)

129. Cheng W, Jia H, Wang X, He X, Jin Q, Cao J, Jing Z

.

Ectromelia virus upregulates the expression of heat shock protein 70 to promote viral replication.

Int J Mol Med.

2018 Aug;42(2):1044-1053.

(IF 3.098)

130. Zhang L, Feng M, Li Z, Zhu M, Fan Y, Chu B, Yuan C, Chen L, Lv H, Hong Z, Hong D

.

Bulleyaconitine A prevents Ti particle-induced osteolysis via suppressing NF-κB signal pathway during osteoclastogenesis and osteoblastogenesis.

J Cell Physiol.

2018 Sep;233(9):7067-7079.

(IF 5.546)

131. Wang DG, Li TM, Liu X

.

RHCG suppresses cervical cancer progression through inhibiting migration and inducing apoptosis regulated by TGF-β1.

BIOCHEM BIOPH RES CO.

2018 Sep 3;503(1):86-93.

(IF 2.985)

132. Lin P, Ding B, Wu Y, Dong K, Li Q

.

Mitogen-stimulated cell proliferation and cytokine production in major depressive disorder patients.

BMC Psychiatry.

2018 Oct 12;18(1):330.

(IF 2.704)

133. Zhu X, Gao L, Yan C, He Y

.

A novel role and mechanism of cystic fibrosis transmembrane conductance regulator in bisphenol A-induced prostate cancer.

J Cell Biochem.

2018 Nov 28.

(IF 4.237)

134. Wu H, Liu HY, Liu WJ, Shi YL, Bao D

.

miR-377-5p inhibits lung cancer cell proliferation, invasion, and cell cycle progression by targeting AKT1 signaling.

J Cell Biochem.

2018 Nov 28.

(IF 4.237)

135. Luo J, Gu Y, Liu P, Jiang X, Yu W, Ye P, Chao Y, Yang H, Zhu L, Zhou L, Chen S

.

Berberine attenuates pulmonary arterial hypertension via protein phosphatase 2A signaling pathway both in vivo and in vitro.

J Cell Physiol.

2018 Dec;233(12):9750-9762.

(IF 5.546)

136. Li L, Zhang L, Zhang Y

.

Roles of miR-494 in Intervertebral Disk Degeneration and the Related Mechanism.

World Neurosurg.

2018 Dec 30 pii: S1878-8750(18)32921-8.

(IF 1.829)

137. Yuan L, Liao PP, Song HC, Zhou JH, Chu HC, Lyu L

.

Hyperbilirubinemia Induces Pro-Apoptotic Effects and Aggravates Renal Ischemia Reperfusion Injury.

Nephron.

2019 142(1):40-50.

(IF 2.089)

138. Yang S, Bao H, Wang H, Li Q

.

Anti-tumour Effect and Pharmacokinetics of an Active Ingredient Isolated from Inonotus hispidus.

Biol Pharm Bull.

2019 42(1):10-17.

(IF 1.863)

139. Liang Gong, Hong Zhu, Taotao Li, Guangfeng Ming, Xuewu Duan, Jiasheng Wang, Yueming Jiang

.

Molecular Signatures of Cytotoxic Effects in Human Embryonic Kidney 293 Cells Treated With Single and Mixture of Ochratoxin A and Citrinin

Food Chem Toxicol.

2019 Jan;123:374-384. doi: 10.1016/j.fct.2018.11.015.

(IF 4.679)

140. Yuehua Wang, Jie Lin, Jinlong Tian, Xu Si, Xinyao Jiao, Weijia Zhang, Ersheng Gong, Bin Li

.

Blueberry Malvidin-3-galactoside Suppresses Hepatocellular Carcinoma by Regulating Apoptosis, Proliferation, and Metastasis Pathways In Vivo and In Vitro

J AGR FOOD CHEM.

2019 Jan 16;67(2):625-636. doi: 10.1021/acs.jafc.8b06209.

(IF 4.192)

141. Dai Y, Wang W, Sun Q, Tuohayi J

.

Ginsenoside Rg3 promotes the antitumor activity of gefitinib in lung cancer cell lines.

Exp Ther Med.

2019 Jan 17(1):953-959.

(IF 1.785)

142. Shen L, Ma G, Shi Y, Ruan Y, Yang X, Wu X, Xiong Y, Wan C, Yang C, Cai L, Xiong L, Gong X, He L, Qin S

.

p.E95K mutation in Indian hedgehog causing brachydactyly type A1 impairs IHH/Gli1 downstream transcriptional regulation.

BMC Genet.

2019 Jan 16 20(1):10.

(IF 2.567)

143. Zhang Z, Li H, Liu M, He J, Zhang X, Chen Y

.

Skullcapflavone I protects cardiomyocytes from hypoxia-caused injury through up-regulation of lincRNA-ROR.

INT J IMMUNOPATH PH.

2019 Jan-Dec 33:2058738419857537.

(IF 2.209)

144. Zuo G, Ren X, Qian X, Ye P, Luo J, Gao X, Zhang J, Chen S

.

Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy.

J Cell Physiol.

2019 Feb;234(2):1925-1936.

(IF 5.546)

145. Liu XD, Zhang FX, Qin ZH, Shan H

.

Isolation and antiproliferation of tumor cells by a novel peptide (TC22) from the beetle Tribolium castaneum.

Amino Acids.

2019 Feb;51(2):311-318.

(IF 3.063)

146. Zhang X, Li P, Zheng Q, Hou J

.

Lactobacillus acidophilus S-layer protein-mediated inhibition of PEDV-induced apoptosis of Vero cells.

Vet Microbiol.

2019 Feb 229:159-167.

(IF 3.03)

147. Li X, Wu M, An D, Yuan H, Li Z, Song Y, Liu Z

.

Suppression of Tafazzin promotes thyroid cancer apoptosis via activating the JNK signaling pathway and enhancing INF2-mediated mitochondrial fission.

J Cell Physiol.

2019 Feb 11

(IF 5.546)

148. Wang L, Xie Y, Yang W, Yang Z, Jiang S, Zhang C, Zhang G

.

Alfalfa polysaccharide prevents H2O2-induced oxidative damage in MEFs by activating MAPK/Nrf2 signaling pathways and suppressing NF-κB signaling pathways.

SCI REP-UK.

2019 Feb 11 9(1):1782.

(IF 3.998)

149. Xu Q, Liu Y, Pan H, Xu T, Li Y, Yuan J, Li P, Yao W, Yan W, Ni C

.

Aberrant expression of miR-125a-3p promotes fibroblast activation via Fyn/STAT3 pathway during silica-induced pulmonary fibrosis.

Toxicology.

2019 Feb 15 414:57-67.

(IF 4.099)

150. Cao L, Li WJ, Yang JH, Wang Y, Hua ZJ, Liu D, Chen YQ, Zhang HM, Zhang R, Zhao JS, Cheng SJ, Zhang Q

.

Inflammatory cytokine-induced expression of MASTL is involved in hepatocarcinogenesis by regulating cell cycle progression.

Oncol Lett.

2019 Mar 17(3):3163-3172.

(IF 2.311)

151. Lv Z, Guo M, Li C, Shao Y, Zhao X, Zhang W

.

VEGF-like protein from Apostichopus japonicus promotes cell proliferation and migration.

Dev Comp Immunol.

2019 Mar 92:230-237.

(IF 3.192)

152. Yang X, Wang W, Zhang X, Zou Q, Cai L, Yu B

.

Downregulation of miR-183 inhibits the growth of PANC-1 pancreatic cancer cells in vitro and in vivo, and increases chemosensitivity to 5-fluorouracil and gemcitabine.

Exp Ther Med.

2019 Mar 17(3):1697-1705.

(IF 1.785)

153. Ren W, Yi H, Bao Y, Liu Y, Gao X

.

Oestrogen inhibits PTPRO to prevent the apoptosis of renal podocytes.

Exp Ther Med.

2019 Mar 17(3):2373-2380.

(IF 1.785)

154. Zha S, Shi W, Su W, Guan X, Liu G

.

Exposure to 2,3,7,8-tetrachlorodibenzo-paradioxin (TCDD) hampers the host defense capability of a bivalve species, Tegillarca granosa.

FISH SHELLFISH IMMUN.

2019 Mar 86:368-373.

(IF 3.298)

155. Lu DL, Ma Q, Wang J, Li LY, Han SL, Limbu SM, Li DL, Chen LQ, Zhang ML, Du ZY

.

Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy.

J Physiol.

2019 Mar 597(6):1585-1603.

156. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, Ma Y, Mao Z, Song H, Chen F

.

β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma.

Cell Death Dis.

2019 Mar 15 10(4):255.

(IF 6.304)

157. Zhai N, Liu K, Li H, Liu Z, Wang H, Korolchuk VI, Carroll B, Pan C, Gan F, Huang K, Chen X

.

PCV2 replication promoted by oxidative stress is dependent on the regulation of autophagy on apoptosis.

Vet Res.

2019 Mar 5 50(1):19.

(IF 3.357)

158. Batulu H, Du GJ, Li DZ, Sailike D, Fan YH, Geng D

.

Effect of poly-arginine R18 on neurocyte cell growth via autophagy in traumatic brain injury.

Exp Ther Med.

2019 May 17(5):4109-4115.

(IF 1.785)

159. Yu Z, Li Y, Han T, Liu Z

.

Demethylation of the HACE1 gene promoter inhibits the proliferation of human liver cancer cells.

Oncol Lett.

2019 May 17(5):4361-4368.

(IF 2.311)

160. Ren H, Yang H, Xie M, Wen Y, Liu Q, Li X, Liu J, Xu H, Tang W, Wang M

.

Chondrocyte apoptosis in rat mandibular condyles induced by dental occlusion due to mitochondrial damage caused by nitric oxide.

Arch Oral Biol.

2019 May 101:108-121.

(IF 1.931)

161. Wang J, Hu H, Song J, Yan F, Qin J, Guo X, Cui C, He Q, Hou X, Liu F, Chen L

.

Aldosterone induced up-expression of ICAM-1 and ET-1 in pancreatic islet endothelium may associate with progression of T2D.

BIOCHEM BIOPH RES CO.

2019 May 14 512(4):750-757.

(IF 2.985)

162. Guo X, Wang Y, Chen Q, Yuan Z, Chen Y, Guo M, Kang L, Sun Y, Jiang Y

.

The Role of PTHLH in Ovarian Follicle Selection, Its Transcriptional Regulation and Genetic Effects on Egg Laying Traits in Hens.

Front Genet.

2019 May 14 10:430.

(IF 3.258)

163. Qiu JF, Li X, Cui WZ, Liu XF, Tao H, Yang K, Dai TM, Sima YH, Xu SQ

.

Inhibition of Period Gene Expression Causes Repression of Cell Cycle Progression and Cell Growth in the Bombyx mori Cells.

Front Physiol.

2019 May 3 10:537.

(IF 3.367)

164. Zhang Z, Chen Y, Li B, Yao Y, Jiang A, Wei W, Liu H, Wu W

.

Identification of a novel miR-206-Notch3 pathway regulating mouse myoblasts proliferation.

Gene.

2019 May 5 695:57-64.

(IF 2.984)

165. Zhang G, Ni Y, Zhang D, Li H, Wang N, Yu C, Li L, Huang W

.

Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells.

SPECTROCHIM ACTA A.

2019 May 5 214:339-347.

(IF 3.232)

166. Sun X, Li X, Jia H, Loor JJ, Bucktrout R, Xu Q, Wang Y, Shu X, Dong J, Zuo R, Yang L, Liu G, Li X

.

Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves.

J Dairy Sci.

2019 Jun 102(6):5673-5685.

(IF 3.333)

167. Li Y, Zhou H, Li Y, Han L, Song M, Chen F, Shang G, Wang D, Wang Z, Zhang W, Zhong M

.

PTPN2 improved renal injury and fibrosis by suppressing STAT-induced inflammation in early diabetic nephropathy.

J Cell Mol Med.

2019 Jun 23(6):4179-4195.

(IF 4.486)

168. Xiong Q, Wang Z, Yu Y, Wen Y, Suguro R, Mao Y, Zhu YZ

.

Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice.

Pharmacol Res.

2019 Jun 144:90-98.

(IF 5.893)

169. Wang X, Wang N, Yang Y, Wang X, Liang J, Tian X, Zhang H, Leng X

.

Polydopamine nanoparticles carrying tumor cell lysate as a potential vaccine for colorectal cancer immunotherapy.

BIOMATER SCI-UK.

2019 Jun 25 7(7):3062-3075.

(IF 6.183)

170. Xu HX, Pan W, Qian JF, Liu F, Dong HQ, Liu QJ

.

MicroRNA‑21 contributes to the puerarin‑induced cardioprotection via suppression of apoptosis and oxidative stress in a cell model of ischemia/reperfusion injury.

Mol Med Rep.

2019 Jul 20(1):719-727.

(IF 2.1)

171. Rao Z, Cao H, Shi B, Liu X, Luo J, Zeng N

.

Inhibitory Effect of Jing-Fang Powder n-Butanol Extract and Its Isolated Fraction D on Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells.

J Pharmacol Exp Ther.

2019 Jul 370(1):62-71.

(IF 3.561)

172. Huang C, Yang X, Huang J, Liu X, Yang X, Jin H, Huang Q, Li L, Zhou R

.

Porcine Beta-Defensin 2 Provides Protection Against Bacterial Infection by a Direct Bactericidal Activity and Alleviates Inflammation via Interference With the TLR4/NF-κB Pathway.

Front Immunol.

2019 Jul 18 10:1673.

(IF 5.085)

173. Lu L, Li J, Le Y, Jiang H

.

Inhibitor of growth 4 (ING4) inhibits hypoxia-induced EMT by decreasing HIF-1α and snail in HK2 cells.

Acta Histochem.

2019 Aug 121(6):695-703.

(IF 2.107)

174. Liu X, Zhuang J, Wang D, Lv L, Zhu F, Yao A, Xu T

.

Glycyrrhizin suppresses inflammation and cell apoptosis by inhibition of HMGB1 via p38/p-JUK signaling pathway in attenuating intervertebral disc degeneration.

Am J Transl Res.

2019 Aug 15 11(8):5105-5113. eCollection 2019.

(IF 3.375)

175. Zhang Y, Zhang W, Xu A, Tian Y, Liang C, Wang Z

.

MicroRNA-188 inhibits proliferation migration and invasion of prostate carcinoma by targeting at MARCKS.

Am J Transl Res.

2019 Aug 15 11(8):5019-5028. eCollection 2019.

(IF 3.375)

176. Cai R, Meng G, Li Y, Wang W, Diao Y, Zhao S, Feng Q, Tang Y

.

The oncolytic efficacy and safety of avian reovirus and its dynamic distribution in infected mice.

EXP BIOL MED.

2019 Sep 244(12):983-991.

(IF 3.139)

177. Lu DL, Ma Q, Sun SX, Zhang H, Chen LQ, Zhang ML, Du ZY

.

Reduced oxidative stress increases acute cold stress tolerance in zebrafish.

Comp Biochem Physiol A Mol Integr Physiol.

2019 Sep 235:166-173.

178. Wang H, Kuang Y, Li J, Shen R, Sun R, Huang D, Sheng Z, Shi J, Zhang M, Huang F, Yang H, Fei J

.

Dnmt3a is required for the tumor stemness of B16 melanoma cells.

ACTA BIOCH BIOPH SIN.

2019 Sep 6 51(9):945-952.

(IF 2.836)

179. He J, Wang L, Zhang C, Shen W, Zhang Y, Liu T, Hu H, Xie X, Luo F

.

Interleukin-9 promotes tumorigenesis through augmenting angiogenesis in non-small cell lung cancer.

Int Immunopharmacol.

2019 Oct 75:105766.

(IF 3.943)

180. Sun X, Zhang X, Zhai H, Zhang D, Ma S

.

Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK.

Biomed Pharmacother.

2019 Oct 118:109144.

(IF 4.545)

181. Guan MM, Rao QX, Huang ML, Wang LJ, Lin SD, Chen Q, Liu CH

.

Long Noncoding RNA TP73-AS1 Targets MicroRNA-329-3p to Regulate Expression of the SMAD2 Gene in Human Cervical Cancer Tissue and Cell Lines.

MED SCI MONITOR.

2019 Oct 30 25:8131-8141.

(IF 1.918)

182. Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J

.

Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine.

Dose Response.

2019 Oct 30 17(4):1559325819883479.

183. Chen R, Wang M, Fu S, Cao F, Duan P, Lu J

.

MicroRNA-204 may participate in the pathogenesis of hypoxic-ischemic encephalopathy through targeting KLLN.

Exp Ther Med.

2019 Nov 18(5):3299-3306.

(IF 1.785)

184. Li Q, Wang Q, Zhang Q, Zhang J, Zhang J

.

Collagen prolyl 4-hydroxylase 2 predicts worse prognosis and promotes glycolysis in cervical cancer.

Am J Transl Res.

2019 Nov 15 11(11):6938-6951. eCollection 2019.

(IF 3.375)

185. Shen J, Sun B, Yu C, Cao Y, Cai C, Yao J

.

Choline and methionine regulate lipid metabolism via the AMPK signaling pathway in hepatocytes exposed to high concentrations of nonesterified fatty acids.

J Cell Biochem.

2019 Nov 3

(IF 4.237)

186. Tan Y, Jin Y, Wu X, Ren Z

.

PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism.

BMC Mol Biol.

2019 Nov 8 20(1):24.

(IF 1.658)

187. He C, Bai X, Li Y, Sun H, Kong X, Fu B, Chen L, Zhu K, Li P, Xu S

.

Runt-related transcription factor 1 contributes to lung cancer development by binding to tartrate-resistant acid phosphatase 5.

Cell Cycle.

2019 Dec 18(23):3404-3419.

(IF 3.699)

188. Guo J, Fang Y, Jiang F, Li L, Zhou H, Xu X, Ning W

.

Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice.

Eur J Pharmacol.

2019 Dec 1 864:172712.

(IF 3.263)

189. Zhongjie Zhang, Yan Xu, Songyuan Chi, Longji Cui

.

MicroRNA-582-5p Reduces Propofol-induced Apoptosis in Developing Neurons by Targeting ROCK1

Curr Neurovasc Res.

2020;17(2):140-146. doi: 10.2174/1567202617666200207124817.

(IF 1.649)

190. Kun Liu, Min Gao, Dongdong Qin, Hongjun Wang, Qixiu Lu

.

Serous BMP8A has Clinical Significance in the Ultrasonic Diagnosis of Thyroid Cancer and Promotes Thyroid Cancer Cell Progression

Endocr Metab Immune Disord Drug Targets.

2020;20(4):591-598. doi: 10.2174/1871530319666191018170022.

191. Guoyong Lu, Peng Tian, Yongxin Zhu, Xiaohua Zuo, Xiaoqiang Li

.

LncRNA XIST knockdown ameliorates oxidative low-density lipoprotein-induced endothelial cells injury by targeting miR-204-5p/TLR4

J BIOSCI BIOENG.

2020;45:52.

(IF 2.366)

192. Jifeng Zheng, Zhiyao Mao, Jianqin Zhang, Liqing Jiang, Ningfu Wang

.

Paeonol Pretreatment Attenuates Anoxia-Reoxygenation Induced Injury in Cardiac Myocytes via a BRCA1 Dependent Pathway

CHEM PHARM BULL.

2020;68(12):1163-1169. doi: 10.1248/cpb.c20-00524.

(IF 1.416)

193. Yu Bai, Wei Wang, Ping Yin, Jian Gao, Lei Na, Yu Sun, Zhuo Wang, Zhongbo Zhang, Chenghai Zhao

.

Ruxolitinib Alleviates Renal Interstitial Fibrosis in UUO Mice

Int J Biol Sci.

2020 Jan 1;16(2):194-203. doi: 10.7150/ijbs.39024.

(IF 4.858)

194. Zhibo Zheng, Shuai Xiang, Yingjie Wang, Yulei Dong, Zeng Li, Yongbo Xiang, Yanyan Bian, Bin Feng, Bo Yang, Xisheng Weng

.

NR4A1 promotes TNF‑α‑induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway

Int J Mol Med.

2020 Jan;45(1):151-161. doi: 10.3892/ijmm.2019.4398.

(IF 3.098)

195. Kui Li, Zheng Zhou, Ju Li, Rui Xiang

.

miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1

TECHNOL CANCER RES T.

Jan-Dec 2020;19:1533033820959404. doi: 10.1177/1533033820959404.

(IF 2.074)

196. Zheng Z, Xiang S, Wang Y, Dong Y, Li Z, Xiang Y, Bian Y, Feng B, Yang B, Weng X

.

NR4A1 promotes TNF‑α‑induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway.

Int J Mol Med.

2020 Jan 45(1):151-161.

(IF 3.098)

197. Li L, Chen Q, Yu Y, Chen H, Lu M, Huang Y, Li P, Chang H

.

RKI-1447 suppresses colorectal carcinoma cell growth via disrupting cellular bioenergetics and mitochondrial dynamics.

J Cell Physiol.

2020 Jan 235(1):254-266.

(IF 5.546)

198. Lei Wang, Weiwei Wang, Hongmei Zhao, Yanshan Liu, Jie Liu, Na Bai

.

Bioactive Effects of Low-Temperature Argon-Oxygen Plasma on a Titanium Implant Surface

ACS Omega.

2020 Feb 18;5(8):3996-4003. doi: 10.1021/acsomega.9b03504.

(IF 2.87)

199. Xi Rao, Jihan Yang, Zilin Chen, Yidie Yuan, Qiubing Chen, Xue Feng, Lizhao Qin, Yongping Zhang

.

Tuning C-C sp2/sp3 ratio of DLC films in FCVA system for biomedical application

Bioact Mater.

2020 Feb 20;5(2):192-200. doi: 10.1016/j.bioactmat.2020.02.009.

200. Xiong Zhang, Lan-Bing Zhu, Jia-Hui He, Hong-Qiu Zhang, Shu-Ya Ji, Chao-Nan Zhang, Na-Na Hou, Chen-Ping Huang, Jian-Hong Zhu

.

Paroxetine suppresses reactive microglia-mediated but not lipopolysaccharide-induced inflammatory responses in primary astrocytes

J NEUROINFLAMM.

2020 Feb 5;17(1):50. doi: 10.1186/s12974-020-1712-0.

(IF 5.793)

201. Binchu Xu, Qingping Zhang, Xinlin Luo, Xinjie Ning, Juncheng Luo, Jian Guo, Qingchang Liu, Gengqiang Ling, Nan Zhou

.

Selenium nanoparticles reduce glucose metabolism and promote apoptosis of glioma cells through reactive oxygen species-dependent manner

Neuroreport.

2020 Feb 5;31(3):226-234. doi: 10.1097/WNR.0000000000001386.

(IF 1.394)

202. Lingling Pang, Yun Cheng, Shenchun Zou, Jie Song

.

Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non-small cell lung cancer by regulating miR-449a/TGIF2 axis

Thorac Cancer.

2020 Feb;11(2):264-276. doi: 10.1111/1759-7714.13245.

(IF 2.61)

203. Qiuting Zhuang, Fa Dai, Xuelin Zhao, Yina Shao, Ming Guo, Zhimeng Lv, Chenghua Li, Weiwei Zhang

.

Cloning and characterization of the virulence factor Hop from Vibrio splendidus

MICROB PATHOGENESIS.

2020 Feb;139:103900. doi: 10.1016/j.micpath.2019.103900.

(IF 2.914)

204. Yun-Hu Zhang, Mei-Juan Shi, Kai-Le Li, Rui Xing, Zhuo-Hua Chen, Xue-Dong Chen, Yong-Feng Wang, Xiao-Fei Liu, Xin-Yin Liang, Yang-Hu Sima, Shi-Qing Xu

.

Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties

J BIOMAT SCI-POLYM E.

2020 Feb;31(3):376-393. doi: 10.1080/09205063.2019.1692642.

(IF 2.69)

205. Fei Mao, Bo Han, Diandong Jiang, Xiaoli Zhang, Tingting Pang, Youfei Fan

.

The Phosphodiesterase-5 Inhibitor Vardenafil Improves the Activation of BMP Signaling in Response to Hydrogen Peroxide

CARDIOVASC DRUG THER.

2020 Feb;34(1):41-52. doi: 10.1007/s10557-020-06939-5.

(IF 4.069)

206. Pang L, Cheng Y, Zou S, Song J

.

Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non-small cell lung cancer by regulating miR-449a/TGIF2 axis.

Thorac Cancer.

2020 Feb 11(2):264-276.

(IF 2.61)

207. Zhang YH, Shi MJ, Li KL, Xing R, Chen ZH, Chen XD, Wang YF, Liu XF, Liang XY, Sima YH, Xu SQ

.

Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties.

J BIOMAT SCI-POLYM E.

2020 Feb 31(3):376-393.

(IF 2.69)

208. Zhuang Q, Dai F, Zhao X, Shao Y, Guo M, Lv Z, Li C, Zhang W

.

Cloning and characterization of the virulence factor Hop from Vibrio splendidus.

MICROB PATHOGENESIS.

2020 Feb 139:103900.

(IF 2.914)

209. Lin-Feng Hu, Jing Feng, Xianling Dai, Yan Sun, Mingxin Xiong, Lili Lai, Shaoyu Zhong, Chao Yi, Geng Chen, Huanhuan Li, Qiufeng Yang, Qin Kuang, Tingting Long, Jianxia Zhan, Tingting Tang, Chenxu Ge, Jun Tan, Minxuan Xu

.

Oral Flavonoid Fisetin Treatment Protects Against Prolonged High-Fat-Diet-Induced Cardiac Dysfunction by Regulation of Multicombined Signaling

J Nutr Biochem.

2020 Mar;77:108253. doi: 10.1016/j.jnutbio.2019.108253.

(IF 4.873)

210. Yin-Xue Song, Yan-Mian Ou, Jing-Yu Zhou

.

Gracillin inhibits apoptosis and inflammation induced by lipopolysaccharide (LPS) to alleviate cardiac injury in mice via improving miR-29a

BIOCHEM BIOPH RES CO.

2020 Mar 12;523(3):580-587. doi: 10.1016/j.bbrc.2019.11.129.

(IF 2.985)

211. Xingwei Chen, Jiajia Xu, Fengtai Suo, Changmin Yu, Duoteng Zhang, Jian Chen, Qiong Wu, Su Jing, Lin Li, Wei Huang

.

A novel naphthofluorescein-based probe for ultrasensitive point-of-care testing of zinc(II) ions and its bioimaging in living cells and zebrafishes

SPECTROCHIM ACTA A.

2020 Mar 15;229:117949. doi: 10.1016/j.saa.2019.117949.

(IF 3.232)

212. Hong-Yan Meng, Li-Qing Chen, Li-Hui Chen

.

The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell

BMC MUSCULOSKEL DIS.

2020 Mar 6;21(1):150. doi: 10.1186/s12891-020-3159-y.

(IF 1.879)

213. Yufan Zhou, Yun Huang, Kuan Hu, Zeyu Zhang, Jiajin Yang, Zhiming Wang

.

HIF1A activates the transcription of lncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p

Cell Death Dis.

2020 Mar 9;11(3):176. doi: 10.1038/s41419-020-2366-7.

(IF 6.304)

214. Kai Huang, Wenwen Yu, Sen Li, Xiao Guan, Jing Liu, Hongdong Song, Dandan Liu, Ruiqian Duan

.

Effect of embryo-remaining oat rice on the lipid profile and intestinal microbiota in high-fat diet fed rats

Food Res Int.

2020 Mar;129:108816. doi: 10.1016/j.foodres.2019.108816.

(IF 4.972)

215. Bing Liu, Huali Wei, Ming Lan, Na Jia, Junmeng Liu, Meng Zhang

.

MicroRNA-21 mediates the protective effects of salidroside against hypoxia/reoxygenation-induced myocardial oxidative stress and inflammatory response

Exp Ther Med.

2020 Mar;19(3):1655-1664. doi: 10.3892/etm.2020.8421.

(IF 1.785)

216. Yiling Zhang, Ningning Cui, Gang Zheng

.

Ubiquitination of P53 by E3 ligase MKRN2 promotes melanoma cell proliferation

Oncol Lett.

2020 Mar;19(3):1975-1984. doi: 10.3892/ol.2020.11261.

(IF 2.311)

217. Huang K, Yu W, Li S, Guan X, Liu J, Song H, Liu D, Duan R

.

Effect of embryo-remaining oat rice on the lipid profile and intestinal microbiota in high-fat diet fed rats.

Food Res Int.

2020 Mar 129:108816.

(IF 4.972)

218. Chen X, Xu J, Suo F, Yu C, Zhang D, Chen J, Wu Q, Jing S, Li L, Huang W

.

A novel naphthofluorescein-based probe for ultrasensitive point-of-care testing of zinc(II) ions and its bioimaging in living cells and zebrafishes.

SPECTROCHIM ACTA A.

2020 Mar 15 229:117949.

(IF 3.232)

219. Gang Li, Longfeng Sun, Zhongyi Mu, Shibo Liu, Hongchen Qu, Qingpeng Xie, Bin Hu

.

MicroRNA-1298-5p Inhibits Cell Proliferation and the Invasiveness of Bladder Cancer Cells via Down-Regulation of Connexin 43

Biochem Cell Biol.

2020 Apr;98(2):227-237. doi: 10.1139/bcb-2019-0137.

(IF 2.46)

220. Shensen Wang, Xinhui Liu, Aamir Ali Khan, Huan Li, Muhammad Tahir, Xinlong Yan, Juan Wang, Hua Huang

.

miR-216a-mediated upregulation of TSPAN1 contributes to pancreatic cancer progression via transcriptional regulation of ITGA2

Am J Cancer Res.

2020 Apr 1;10(4):1115-1129.

(IF 5.177)

221. Dongqiang Song, Beili Xu, Dongmin Shi, Shuyu Li, Yu Cai

.

S100A6 promotes proliferation and migration of HepG2 cells via increased ubiquitin-dependent degradation of p53

Open Med (Wars).

2020 Apr 20;15(1):317-326. doi: 10.1515/med-2020-0101.

222. Kemin Yan, Xin Wang, Hui Pan, Linjie Wang, Hongbo Yang, Meijuan Liu, Huijuan Zhu, Fengying Gong

.

Safflower Yellow and Its Main Component HSYA Alleviate Diet-Induced Obesity in Mice: Possible Involvement of the Increased Antioxidant Enzymes in Liver and Adipose Tissue

Front Pharmacol.

2020 Apr 21;11:482. doi: 10.3389/fphar.2020.00482.

(IF 4.225)

223. Xiuling Zhao, Junyu Nie, Yuyan Tang, Wengtan He, Kai Xiao, Chunying Pang, Xianwei Liang, Yangqing Lu, Ming Zhang

.

Generation of Transgenic Cloned Buffalo Embryos Harboring the EGFP Gene in the Y Chromosome Using CRISPR/Cas9-Mediated Targeted Integration

Front Vet Sci.

2020 Apr 23;7:199. doi: 10.3389/fvets.2020.00199.

(IF 2.245)

224. Liheng Liu, Haili Jiang, Xiaoxin Wang, Xin Wang, Liying Zou

.

STYX/FBXW7 axis participates in the development of endometrial cancer cell via Notch-mTOR signaling pathway

BIOSCIENCE REP.

2020 Apr 30;40(4):BSR20200057. doi: 10.1042/BSR20200057.

(IF 2.942)

225. Binchu Xu, Xinlin Luo, Xinjie Ning, Juncheng Luo, Jian Guo, Qingchang Liu, Gengqiang Ling

.

miR-149 rs2292832 C allele enhances the cytotoxic effect of temozolomide against glioma cells

Neuroreport.

2020 Apr 8;31(6):498-506. doi: 10.1097/WNR.0000000000001440.

(IF 1.394)

226. Jun Gao, Chao Dai, Xin Yu, Xiang-Bao Yin, Fan Zhou

.

LncRNA LEF1-AS1 silencing diminishes EZH2 expression to delay hepatocellular carcinoma development by impairing CEBPB-interaction with CDCA7

Cell Cycle.

2020 Apr;19(8):870-883. doi: 10.1080/15384101.2020.1731052.

(IF 3.699)

227. W-J Wu, J Wang, J Liang, Q Zhou, Y Liang

.

Mocetinostat suppresses epidural fibrosis following laminectomy by inhibiting myofibroblast activation and increasing apoptosis

EUR REV MED PHARMACO.

2020 Apr;24(8):4467-4475. doi: 10.26355/eurrev_202004_21029.

(IF 3.024)

228. Yu Wande, Luo Jie, Zhang Aikai, Zheng Yaguo, Zhu Linlin, Gu Yue, Zhang Hang

.

Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells

Exp Cell Res.

2020 May 1;390(1):111910. doi: 10.1016/j.yexcr.2020.111910.

(IF 3.383)

229. Yan-Ni Li, Ya Su

.

Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING

BIOCHEM BIOPH RES CO.

2020 May 28;526(2):381-388. doi: 10.1016/j.bbrc.2020.03.034.

(IF 2.985)

230. Xiao-Li Sun, Xin-Wu Zhang, Hong-Jun Zhai, Di Zhang, Shuang-Yu Ma

.

Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS

Biomed Pharmacother.

2020 May;125:109118. doi: 10.1016/j.biopha.2019.109118.

(IF 4.545)

231. Jiawen Zhang, Qinyi Zhang, Cong Sun, Yanjuan Huang, Jing Zhang, Qingying Wang

.

Clinical relevance of ARF/ARL family genes and oncogenic function of ARL4C in endometrial cancer

Biomed Pharmacother.

2020 May;125:110000. doi: 10.1016/j.biopha.2020.110000.

(IF 4.545)

232. J-S Yang, P Liu, J-J Liu, L Chu, J Li, C Chen, L Yan, T-J Liu, H Chen, D-J Hao

.

Suberoylanilide hydroxamic acid attenuates epidural fibrosis via inhibiting myofibroblast differentiation and increasing fibroblast apoptosis

EUR REV MED PHARMACO.

2020 May;24(10):5726-5733. doi: 10.26355/eurrev_202005_21364.

(IF 3.024)

233. Li Z, Jiang T, Lu Q, Xu K, He J, Xie L, Chen Z, Zheng Z, Ye L, Xu K, Zhang H, Hu A

.

Berberine attenuated the cytotoxicity induced by t-BHP via inhibiting oxidative stress and mitochondria dysfunction in PC-12 cells.

Cell Mol Neurobiol.

2020 May 40(4):587-602.

(IF 3.606)

234. Chunyan Li, Tingfeng Han, Run Li, Liming Fu, Lei Yue

.

miR-26a-5p mediates TLR signaling pathway by targeting CTGF in LPS-induced alveolar macrophage

BIOSCIENCE REP.

2020 Jun 26;40(6):BSR20192598. doi: 10.1042/BSR20192598.

(IF 2.942)

235. Shaohua Guo, Junjie Peng, Yongle Xiao, Yanyan Liu, Weiwei Hao, Xin Yang, Hongning Wang, Rong Gao

.

The Construction and Immunoadjuvant Activities of the Oral Interleukin-17B Expressed by Lactobacillus plantarum NC8 Strain in the Infectious Bronchitis Virus Vaccination of Chickens

Vaccines (Basel).

2020 Jun 6;8(2):282. doi: 10.3390/vaccines8020282.

236. Zhi-Xi Duan, Chao Tu, Qing Liu, Shuang-Qing Li, Yi-Han Li, Peng Xie, Zhi-Hong Li

.

Adiponectin receptor agonist AdipoRon attenuates calcification of osteoarthritis chondrocytes by promoting autophagy

J Cell Biochem.

2020 Jun;121(5-6):3333-3344. doi: 10.1002/jcb.29605.

(IF 4.237)

237. Hongning Song, Linfeng Lai, Min Liu, Xuxia Wang, Jun Zhang, Shanyong Zhang

.

Investigating the role and mechanism of microRNA-196a in oral squamous cell carcinoma by targeting FOXO1

Exp Ther Med.

2020 Jun;19(6):3707-3715. doi: 10.3892/etm.2020.8614.

(IF 1.785)

238. Sen Li, Furong Xian, Xiao Guan, Kai Huang, Wenwen Yu, Dandan Liu

.

Neural Protective Effects of Millet and Millet Polyphenols on High-Fat Diet-Induced Oxidative Stress in the Brain

PLANT FOOD HUM NUTR.

2020 Jun;75(2):208-214. doi: 10.1007/s11130-020-00802-6.

(IF 2.901)

239. Ji'an Xia, Hongdong Song, Kai Huang, Sen Li, Xiao Guan

.

Purification and characterization of antioxidant peptides from enzymatic hydrolysate of mungbean protein

J Food Sci.

2020 Jun;85(6):1735-1741. doi: 10.1111/1750-3841.15139.

(IF 2.478)

240. Huiming Deng, Ling Huang, Zhongkai Liao, Mi Liu, Qiang Li, Ronghua Xu

.

Itraconazole inhibits the Hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells

Cell Death Dis.

2020 Jul 17;11(7):539. doi: 10.1038/s41419-020-02742-0.

(IF 6.304)

241. Xin Zhang, Nianfeng Zhang, Juan Kan, Rui Sun, Sixue Tang, Zhihao Wang, Mengfei Chen, Jun Liu, Changhai Jin

.

Anti-inflammatory activity of alkali-soluble polysaccharides from Arctium lappa L. and its effect on gut microbiota of mice with inflammation

Int J Biol Macromol.

2020 Jul 1;154:773-787. doi: 10.1016/j.ijbiomac.2020.03.111.

(IF 5.162)

242. Lei Shi, Guan Sun, Haifeng Zhu

.

Demethoxycurcumin analogue DMC-BH inhibits orthotopic growth of glioma stem cells by targeting JNK/ERK signaling

AGING-US.

2020 Jul 24;12(14):14718-14735. doi: 10.18632/aging.103531.

(IF 4.831)

243. Xiancong Bu, Dong Li, Feng Wang, Qimeng Sun, Zixian Zhang

.

Protective Role of Astrocyte-Derived Exosomal microRNA-361 in Cerebral Ischemic-Reperfusion Injury by Regulating the AMPK/mTOR Signaling Pathway and Targeting CTSB

Neuropsychiatr Dis Treat.

2020 Jul 31;16:1863-1877. doi: 10.2147/NDT.S260748.

244. Huiyuan Zhang, Xi Lu, Yuehan Hao, Ling Tang, Zhiyi He

.

MicroRNA-26a-5p alleviates neuronal apoptosis and brain injury in intracerebral hemorrhage by targeting RAN binding protein 9

Acta Histochem.

2020 Jul;122(5):151571. doi: 10.1016/j.acthis.2020.151571.

(IF 2.107)

245. Ying Li, Jie Sun, Lei Gu, Xufang Gao

.

Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells

Mol Med Rep.

2020 Jul;22(1):344-352. doi: 10.3892/mmr.2020.11108.

(IF 2.1)

246. X-F Liu, K Wang, H-C Du

.

LncRNA SNHG6 regulating Hedgehog signaling pathway and affecting the biological function of gallbladder carcinoma cells through targeting miR-26b-5p

EUR REV MED PHARMACO.

2020 Jul;24(14):7598-7611. doi: 10.26355/eurrev_202007_22258.

(IF 3.024)

247. Tao Wang, Zhongwei Zhang, Caiping Song, Lei Sun, Xinli Sui, Qun Qu, Jing Liu

.

Astragaloside IV protects retinal pigment epithelial cells from apoptosis by upregulating miR‑128 expression in diabetic rats

Int J Mol Med.

2020 Jul;46(1):340-350. doi: 10.3892/ijmm.2020.4588.

(IF 3.098)

248. Ying-Hui Kong, Su-Ping Xu

.

Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation

Int J Mol Med.

2020 Jul;46(1):67-82. doi: 10.3892/ijmm.2020.4589.

(IF 3.098)

249. Luyan Zhang, Xifa Wu, Yong Feng, Linlin Zheng, Jinbo Jian

.

Selenium donors inhibits osteoclastogenesis through inhibiting IL-6 and plays a pivotal role in bone metastasis from breast cancer

TOXICOL RES-UK.

2020 Aug 13;9(4):544-551. doi: 10.1093/toxres/tfaa053.

(IF 2.283)

250. Wei Huang, Xueting Li, Dawei Wang, Yinghao Sun, Qian Wang, Yue Bu, Fangfang Niu

.

Curcumin reduces LPS-induced septic acute kidney injury through suppression of lncRNA PVT1 in mice

Life Sci.

2020 Aug 1;254:117340. doi: 10.1016/j.lfs.2020.117340.

(IF 3.647)

251. Hong Zhao, Jingjing Wan, Yu Zhu

.

Carboplatin Inhibits the Progression of Retinoblastoma Through IncRNA XIST/miR-200a-3p/NRP1 Axis

DRUG DES DEV THER.

2020 Aug 21;14:3417-3427. doi: 10.2147/DDDT.S256813.

(IF 3.216)

252. Hongda Ding, Junpeng Liu, Caibin Wang, Yang Su

.

NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA

Cancer Cell Int.

2020 Aug 31;20:425. doi: 10.1186/s12935-020-01520-4.

(IF 4.175)

253. Jinjin Tong, Mingwei Sun, Hua Zhang, Delian Yang, Yonghong Zhang, Benhai Xiong, Linshu Jiang

.

Proteomic analysis of bovine mammary epithelial cells after in vitro incubation with S. agalactiae: potential biomarkers

Vet Res.

2020 Aug 3;51(1):98. doi: 10.1186/s13567-020-00808-7.

(IF 3.357)

254. Y-X Gao, H-X Gao, X-Y Xu, F-K Ding

.

Effects of lncRNA MALAT1 and lncRNA NKILA on proliferation, invasion and apoptosis of retinoblastoma

EUR REV MED PHARMACO.

2020 Aug;24(16):8296-8307. doi: 10.26355/eurrev_202008_22626.

(IF 3.024)

255. Jing Huang, Zhen-Lin Gu, Wei Chen, Ying-Ying Xu, Ming Chen

.

Knockdown of ubiquitin-specific peptidase 13 inhibits cell growth of hepatocellular carcinoma by reducing c-Myc expression

Kaohsiung J Med Sci.

2020 Aug;36(8):615-621. doi: 10.1002/kjm2.12209.

(IF 1.737)

256. Dongjian Ying, Xinhua Zhou, Yi Ruan, Luoluo Wang, Xiang Wu

.

LncRNA Gm4419 induces cell apoptosis in hepatic ischemia-reperfusion injury via regulating the miR-455-SOX6 axis

Biochem Cell Biol.

2020 Aug;98(4):474-483. doi: 10.1139/bcb-2019-0331.

(IF 2.46)

257. Yunpeng Zhu, Shiliang Liu, Chunxiang Feng, Chang Liu, Zhixian Wang, Kai Yu, Jing Wang, Xiaoyong Zeng

.

The Delivery Materials with Chemotherapy Drugs for Treatment of the Positive Margin in Solid Tumors

TISSUE ENG .

2020 Sep 21. doi: 10.1089/ten.TEA.2020.0076.

258. Yu Liao, Ziyan Wang, Lixin Wang, Yanzhao Lin, Ziyi Ye, Xufang Zeng, Fangning Wei

.

MicroRNA-27a-3p directly targets FosB to regulate cell proliferation, apoptosis, and inflammation responses in immunoglobulin a nephropathy

BIOCHEM BIOPH RES CO.

2020 Sep 3;529(4):1124-1130. doi: 10.1016/j.bbrc.2020.06.115.

(IF 2.985)

259. Guanchen Zhu, Kaikai Wang, Haixiang Qin, Xiaozhi Zhao, Wei Chen, Linfeng Xu, Wenmin Cao, Hongqian Guo

.

Internal cross-linked polymeric nanoparticles with dual sensitivity for combination therapy of muscle-invasive bladder cancer

J NANOBIOTECHNOL.

2020 Sep 4;18(1):124. doi: 10.1186/s12951-020-00686-3.

(IF 6.518)

260. Chunyu Huang, Chang Zhu, Jie Chen, Kaibin Huang, Fang Li, Shunkai Ding, Ligang Xia, Wei Jiang, Yang Li

.

Nano-Platelets as an Oxygen Regulator for Augmenting Starvation Therapy Against Hypoxic Tumor

Front Bioeng Biotechnol.

2020 Sep 4;8:571993. doi: 10.3389/fbioe.2020.571993.

261. Shufang Li, Meng Zhang, Bei Zhang

.

MTMR14 protects against hepatic ischemia-reperfusion injury through interacting with AKT signaling in vivo and in vitro

Biomed Pharmacother.

2020 Sep;129:110455. doi: 10.1016/j.biopha.2020.110455.

(IF 4.545)

262. Peng Huang, Dongbai Yang, Lianzhi Yu, Yu Shi

.

Downregulation of lncRNA ZFAS1 protects H9c2 cardiomyocytes from ischemia/reperfusion‑induced apoptosis via the miR‑590‑3p/NF‑κB signaling pathway

Mol Med Rep.

2020 Sep;22(3):2300-2306. doi: 10.3892/mmr.2020.11340.

(IF 2.1)

263. Ying-Ying Xu, Wan-Wei Wang, Jing Huang, Wei-Guo Zhu

.

Ellagic acid induces esophageal squamous cell carcinoma cell apoptosis by modulating SHP-1/STAT3 signaling

Kaohsiung J Med Sci.

2020 Sep;36(9):699-704. doi: 10.1002/kjm2.12224.

(IF 1.737)

264. Jie Xiong, Jianbo Ni, Congying Chen, Kezhou Wang

.

miR‑148a‑3p regulates alcoholic liver fibrosis through targeting ERBB3

Int J Mol Med.

2020 Sep;46(3):1003-1012. doi: 10.3892/ijmm.2020.4655.

(IF 3.098)

265. Leilei Xu, Qin Zhang, Changhua Li, Fu Hua, Xiaoping Liu

.

Ultrasound Microbubble-Mediated microRNA-505 Regulates Cervical Cancer Cell Growth via AKT2

ANAL CELL PATHOL.

2020 Oct 15;2020:3731953. doi: 10.1155/2020/3731953.

(IF 2.052)

266. Shujun Wang, Wei Liu, Jin Wang, Xia Bai

.

Curculigoside inhibits ferroptosis in ulcerative colitis through the induction of GPX4

Life Sci.

2020 Oct 15;259:118356. doi: 10.1016/j.lfs.2020.118356.

(IF 3.647)

267. Zhi-Gao Hu, Shun Zhang, Yu-Bing Chen, Wei Cao, Zhi-Yang Zhou, Jiang-Nan Zhang, Ge Gao, Song-Qing He

.

DTNA promotes HBV-induced hepatocellular carcinoma progression by activating STAT3 and regulating TGFβ1 and P53 signaling

Life Sci.

2020 Oct 1;258:118029. doi: 10.1016/j.lfs.2020.118029.

(IF 3.647)

268. Changfeng Song, Wen Xu, Hongkun Wu, Xiaotong Wang, Qianyi Gong, Chang Liu, Jianwen Liu, Lin Zhou

.

Photodynamic therapy induces autophagy-mediated cell death in human colorectal cancer cells via activation of the ROS/JNK signaling pathway

Cell Death Dis.

2020 Oct 31;11(10):938. doi: 10.1038/s41419-020-03136-y.

(IF 6.304)

269. Huajun Wang, Guangying Zheng

.

LncRNA NEAT1 promotes proliferation, migration, invasion and epithelial-mesenchymal transition process in TGF-β2-stimulated lens epithelial cells through regulating the miR-486-5p/SMAD4 axis

Cancer Cell Int.

2020 Oct 31;20(1):529. doi: 10.1186/s12935-020-01619-8.

(IF 4.175)

270. Hui-Ling Cao, Ming-Qiang Gu, Zhuo Sun, Zhong-Jian Chen

.

miR-144-3p Contributes to the Development of Thyroid Tumors Through the PTEN/PI3K/AKT Pathway

Cancer Manag Res.

2020 Oct 9;12:9845-9855. doi: 10.2147/CMAR.S265196.

(IF 2.886)

271. Weicheng Wu, Jiaquan Liu, Chengbin Yang, Zihui Xu, Jianbao Huang, Jiyan Lin

.

Astrocyte-derived exosome-transported microRNA-34c is neuroprotective against cerebral ischemia/reperfusion injury via TLR7 and the NF-κB/MAPK pathways

Brain Res Bull.

2020 Oct;163:84-94. doi: 10.1016/j.brainresbull.2020.07.013.

(IF 3.37)

272. Yi Zhang, Yina Shao, Zhimeng Lv, Chenghua Li

.

MiR-210 regulates coelomocyte proliferation through targeting E2F3 in Apostichopus japonicus

FISH SHELLFISH IMMUN.

2020 Nov;106:583-590. doi: 10.1016/j.fsi.2020.08.036.

(IF 3.298)

273. Shuhua Shen, Kungen Wang, Yihui Zhi, Wei Shen, Liquan Huang

.

Gypenosides improves nonalcoholic fatty liver disease induced by high-fat diet induced through regulating LPS/TLR4 signaling pathway

Cell Cycle.

2020 Nov;19(22):3042-3053. doi: 10.1080/15384101.2020.1829800.

(IF 3.699)

274. Fang Zhang, Tao Pan, Xiaohui Wu, Xingchun Gao, Zhikui Li, Xinling Ren

.

Non-cytotoxic doses of shikonin inhibit lipopolysaccharide-induced TNF-α expression via activation of the AMP-activated protein kinase signaling pathway

Exp Ther Med.

2020 Nov;20(5):45. doi: 10.3892/etm.2020.9173.

(IF 1.785)

275. Jun Fu, Jun Mao, Chun Wang

.

The microRNA-152/human leukocyte antigen-G axis affects proliferation and immune escape of non-small cell lung cancer cells

J Int Med Res.

2020 Nov;48(11):300060520970758. doi: 10.1177/0300060520970758.

(IF 1.287)

276. Xiaoyan Yu, Jie Bao, Xinyu Cui, Fengxia DU, Yuefei Wang, Lili Bi, Jun Sun, Ling Li

.

Pyrrolidinedithiocarbamic Acid Ammonium Salt Inhibits Apoptosis and Phenotypic Transformation of Co-Culture of Myeloma Cells and Renal Tubular Epithelial Cells by Reducing the Secretion of Light Chain

Iran J Public Health.

2020 Nov;49(11):2078-2086. doi: 10.18502/ijph.v49i11.4723.

(IF 1.291)

277. Guoxiu Cao, Bei Chen, Xian Zhang, Hongyun Chen

.

Human Adipose-Derived Mesenchymal Stem Cells-Derived Exosomal microRNA-19b Promotes the Healing of Skin Wounds Through Modulation of the CCL1/TGF-β Signaling Axis

Clin Cosmet Investig Dermatol.

2020 Dec 15;13:957-971. doi: 10.2147/CCID.S274370.

278. Nengwen Xia, Hui Wang, Xueliang Liu, Qi Shao, Da Ao, Yulin Xu, Sen Jiang, Jia Luo, Jiajia Zhang, Nanhua Chen, François Meurens, Wanglong Zheng, Jianzhong Zhu

.

African Swine Fever Virus Structural Protein p17 Inhibits Cell Proliferation through ER Stress-ROS Mediated Cell Cycle Arrest

VIRUSES-BASEL.

2020 Dec 24;13(1):21. doi: 10.3390/v13010021.

(IF 3.816)

279. Xiaolong Sun, Xu Wang, Zhenyu Zhao, Jing Chen, Cheng Li, Gang Zhao

.

Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway

Acta Histochem.

2020 Dec;122(8):151649. doi: 10.1016/j.acthis.2020.151649.

(IF 2.107)

280. Shanshan Li, Hui Yang, Min Zhao, Linli Gong, Yahong Wang, Zhiyong Lv, Yuhang Quan, Zhonghui Wang

.

Demethylation of HACE1 gene promoter by propofol promotes autophagy of human A549 cells

Oncol Lett.

2020 Dec;20(6):280. doi: 10.3892/ol.2020.12143.

(IF 2.311)

281. H Ma, C-M Liu, S-Q Shao, Y-Y Song, J Zhou, L-N Cao, H-Q Yin, S-L Yin

.

Myriocin alleviates Oleic/Palmitate induced chondrocyte degeneration via the suppression of ceramide

EUR REV MED PHARMACO.

2020 Dec;24(24):12938-12947. doi: 10.26355/eurrev_202012_24197.

(IF 3.024)

282. Congfeng Tang, Xuejiao Liu, Hailing Zhu, Quan Lu

.

Antagonizing effect of icaritin on apoptosis and injury of hippocampal neurocytes induced by amyloid beta via GR/BDNF signaling pathway

J RECEPT SIG TRANSD.

2020 Dec;40(6):550-559. doi: 10.1080/10799893.2020.1768547.

(IF 1.466)

283. Han Wu, Haixiao Wu, Peng Sun, Desheng Zhu, Min Ma, Wentao Fan

.

miR-155-5p Promotes Cell Proliferation and Migration of Clear Cell Renal Cell Carcinoma by Targeting PEG3

Urol Int.

2021;105(9-10):906-915. doi: 10.1159/000514416.

(IF 1.698)

284. Yi R Hu, San L Xing, Chuan Chen, Ding Z Shen, Jiu L Chen

.

Codonopsis pilosula Polysaccharides Alleviate Aβ 1-40-Induced PC12 Cells Energy Dysmetabolism via CD38/NAD+ Signaling Pathway

Curr Alzheimer Res.

2021;18(3):208-221. doi: 10.2174/1567205018666210608103831.

(IF 3.047)

285. Xue Li, Lei Wang, Changbing Wang, Caixia Tan, Xifaofang Liu, Yongzhan Zhu

.

Development and Biocompatibility Analysis of NBD Peptide Sustained- Release Microsphere Scaffold Nanoparticle SP-Sr-CaS/NBD

Curr Drug Deliv.

2021;18(4):433-445. doi: 10.2174/1567201817999201116154935.

(IF 1.582)

286. Wenwen Li, Shiyuan Wang, Heng Zhang, Bingqiu Li, Lingzhi Xu, Yan Li, Chaojun Kong, Haishan Jiao, Yan Wang, Yana Pang, Wei Qin, Longfei Jia, Jianping Jia

.

Honokiol Restores Microglial Phagocytosis by Reversing Metabolic Reprogramming

J Alzheimers Dis.

2021;82(4):1475-1485. doi: 10.3233/JAD-210177.

(IF 3.909)

287. Xiao-Cui Nie, Fang He, Chong Lan, Ju-Min Niu, Pu Xia

.

Combined Serum DKK3 and Circulating CD133 Cells as Prognostic Biomarkers for Ovarian Cancer Patients

Onco Targets Ther.

2021 Jan 14;14:427-434. doi: 10.2147/OTT.S288191.

288. Xiaojuan Zhu, Tao Wu, Ying Chi, Yiyue Ge, Yongjun Jiao, Fengcai Zhu, Lunbiao Cui

.

MicroRNA-195 suppresses enterovirus A71-induced pyroptosis in human neuroblastoma cells through targeting NLRX1

Virus Res.

2021 Jan 15;292:198245. doi: 10.1016/j.virusres.2020.198245.

(IF 2.934)

289. Shaohong Fang, Xin Wan, Xiaoyi Zou, Song Sun, Xinran Hao, Chenchen Liang, Zhenming Zhang, Fangni Zhang, Bo Sun, Hulun Li, Bo Yu

.

Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway

Cell Death Dis.

2021 Jan 18;12(1):88. doi: 10.1038/s41419-020-03357-1.

(IF 6.304)

290. Chun Shi, Han Guo, Xintong Liu

.

Platelet Mitochondria Transplantation Rescues Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction and Neuronal Cell Death Involving the FUNDC2/PIP3/Akt/FOXO3a Axis

Cell Transplant.

2021 Jan-Dec;30:9636897211024210. doi: 10.1177/09636897211024210.

(IF 3.341)

291. Jing Zhang, Na Jiang, Jian Ping, Lieming Xu

.

TGF‑β1‑induced autophagy activates hepatic stellate cells via the ERK and JNK signaling pathways

Int J Mol Med.

2021 Jan;47(1):256-266. doi: 10.3892/ijmm.2020.4778.

(IF 3.098)

292. Tong Chen, Shengnan Liu, Menglin Zheng, Yixuan Li, Ling He

.

The effect of geniposide on chronic unpredictable mild stress-induced depressive mice through BTK/TLR4/NF-κB and BDNF/TrkB signaling pathways

Phytother Res.

2021 Feb;35(2):932-945. doi: 10.1002/ptr.6846.

(IF 4.087)

293. Meng-Meng Liu, Hui Liu, Shan-Hong Li, Yu Zhong, Yao Chen, Zi-Zhen Guo, Wei Chen, Xin-Hua Lin, Yun Lei, Ai-Lin Liu

.

Integrated paper-based 3D platform for long-term cell culture and in situ cell viability monitoring of Alzheimer's disease cell model

Talanta.

2021 Feb 1;223(Pt 2):121738. doi: 10.1016/j.talanta.2020.121738.

(IF 5.339)

294. Yanyu Bi, Yiming Jiang, Xia Li, Guoxin Hou, Kesang Li

.

Rapamycin inhibits lung squamous cell carcinoma growth by downregulating glypican-3/Wnt/β-catenin signaling and autophagy

J Cancer Res Clin Oncol.

2021 Feb;147(2):499-505. doi: 10.1007/s00432-020-03422-4.

295. Yinghui Shang, Qinghai Wang, Jian Li, Haiting Liu, Qiangqiang Zhao, Xueyuan Huang, Hang Dong, Wansong Chen, Rong Gui, Xinmin Nie

.

Zirconia Nanoparticles Induce HeLa Cell Death Through Mitochondrial Apoptosis and Autophagy Pathways Mediated by ROS

Front Chem.

2021 Mar 16;9:522708. doi: 10.3389/fchem.2021.522708.

(IF 3.693)

296. Kai Wu, Qiang Wang, Yu-Lin Liu, Zhuo Xiang, Qing-Qing Wang, Li Yin, Shun-Li Liu

.

LncRNA POU3F3 Contributes to Dacarbazine Resistance of Human Melanoma Through the MiR-650/MGMT Axis

Front Oncol.

2021 Mar 17;11:643613. doi: 10.3389/fonc.2021.643613.

(IF 4.848)

297. Fengliang Wang, Sujin Yang, Mingming Lv, Fei Chen, Hong Yin, Sheng Gao, Jinhai Tang, Jing Yu

.

Novel Long Noncoding RNA 005620 Induces Epirubicin Resistance in Triple-Negative Breast Cancer by Regulating ITGB1 Expression

Front Oncol.

2021 Mar 4;11:592215. doi: 10.3389/fonc.2021.592215.

(IF 4.848)

298. Weishang Zhou, Yu Tang, Xueying Du, Yu Han, Wei Shi, Shuge Sun, Weixia Zhang, Huoqing Zheng, Guangxu Liu

.

Fine polystyrene microplastics render immune responses more vulnerable to two veterinary antibiotics in a bivalve species

Mar Pollut Bull.

2021 Mar;164:111995. doi: 10.1016/j.marpolbul.2021.111995.

(IF 4.049)

299. Changwei Dou, Huanye Mo, Tianxiang Chen, Jie Liu, Yuqun Zeng, Shuangshuang Li, Cheng Guo, Chengwu Zhang

.

ZMYND8 promotes the growth and metastasis of hepatocellular carcinoma by promoting HK2-mediated glycolysis

Pathol Res Pract.

2021 Mar;219:153345. doi: 10.1016/j.prp.2021.153345.

(IF 2.05)

300. Qiushi Xu, Yunhui Fan, Juan J Loor, Yusheng Liang, Xudong Sun, Hongdou Jia, Chenxu Zhao, Chuang Xu

.

Adenosine 5'-monophosphate-activated protein kinase ameliorates bovine adipocyte oxidative stress by inducing antioxidant responses and autophagy

J Dairy Sci.

2021 Apr;104(4):4516-4528. doi: 10.3168/jds.2020-18728.

(IF 3.333)

301. Xiaolong Sun, Xu Wang, Zhenyu Zhao, Jing Chen, Cheng Li, Gang Zhao

.

Paeoniflorin inhibited nod-like receptor protein-3 inflammasome and NF-κB-mediated inflammatory reactions in diabetic foot ulcer by inhibiting the chemokine receptor CXCR2

Drug Dev Res.

2021 May;82(3):404-411. doi: 10.1002/ddr.21763.

302. Chunrong Li, Yanfei Zhang, Jun Chen, Liping Liu, Huihui Yang, Si-Yang Liu, Yuzhi Xu, Zong Dai, Xiaoyong Zou

.

Fluorescence on-off-on with small and charge-tunable nanoparticles enables highly sensitive intracellular microRNA imaging in living cells

Talanta.

2021 May 1;226:122114. doi: 10.1016/j.talanta.2021.122114.

(IF 5.339)

303. Honglin Yu, Jingbo Zhu, Lingyu Chang, Chaozhao Liang, Xiaohu Li, Wei Wang

.

3-Bromopyruvate decreased kidney fibrosis and fibroblast activation by suppressing aerobic glycolysis in unilateral ureteral obstruction mice model

Life Sci.

2021 May 1;272:119206. doi: 10.1016/j.lfs.2021.119206.

(IF 3.647)

304. Li Zhang, Xiufen Chen, Mingxiu Chang, Boning Jiao

.

MiR-30c-5p/ATG5 Axis Regulates the Progression of Parkinson's Disease

Front Cell Neurosci.

2021 May 25;15:644507. doi: 10.3389/fncel.2021.644507.

(IF 3.921)

305. Rui Hu, Shan Chen, Jianxin Yan

.

Blocking circ-CNST suppresses malignant behaviors of osteosarcoma cells and inhibits glycolysis through circ-CNST-miR-578-LDHA/PDK1 ceRNA networks

J Orthop Surg Res.

2021 May 7;16(1):300. doi: 10.1186/s13018-021-02427-0.

(IF 1.777)

306. Pengzhi Chen, Zhenyu Yao, Zhihui He

.

Resveratrol protects against high glucose-induced oxidative damage in human lens epithelial cells by activating autophagy

Exp Ther Med.

2021 May;21(5):440. doi: 10.3892/etm.2021.9871.

(IF 1.785)

307. Xiaofeng Zhou, Yingting He, Nian Li, Guofeng Bai, Xiangchun Pan, Zhe Zhang, Hao Zhang, Jiaqi Li, Xiaolong Yuan

.

DNA methylation mediated RSPO2 to promote follicular development in mammals

Cell Death Dis.

2021 Jun 26;12(7):653. doi: 10.1038/s41419-021-03941-z.

(IF 6.304)

308. Qi Feng, Donglai Wang, Peng Guo, Zibo Zhang, Jiangang Feng

.

Long non-coding RNA HOTAIR promotes the progression of synovial sarcoma through microRNA-126/stromal cell-derived factor-1 regulation

Oncol Lett.

2021 Jun;21(6):444. doi: 10.3892/ol.2021.12705.

(IF 2.311)

309. Qian Chai, Ziang Meng, Dexue Lu, Ziying Zhang, Meili Liu, Weihua Wu

.

Intermittent high glucose induces pyroptosis of rat H9C2 cardiomyocytes via sodium-glucose cotransporter 1

Mol Cell Biochem.

2021 Jun;476(6):2479-2489. doi: 10.1007/s11010-021-04104-6.

(IF 2.795)

310. Qin-Xiao, Yao-Yao Sun, Zhan-Jun Lu, Tian-Zi Zhang, Shan-Shan Li, Ting Hua, Suriguga, Wen-Lin Chen, Lin-Lin Ran, Wen-Zhen Yu, Fei Yang, Burenbatu

.

Inhibitory effects of safranal on laser-induced choroidal neovascularization and human choroidal microvascular endothelial cells and related pathways analyzed with transcriptome sequencing

Int J Ophthalmol.

2021 Jul 18;14(7):981-989. doi: 10.18240/ijo.2021.07.04.

311. Sen Li, Ting Liang, Yu Zhang, Kai Huang, Shuya Yang, Hongyan Lv, Yu Chen, Chunhong Zhang, Xiao Guan

.

Vitexin alleviates high-fat diet induced brain oxidative stress and inflammation via anti-oxidant, anti-inflammatory and gut microbiota modulating properties

Free Radic Biol Med.

2021 Aug 1;171:332-344. doi: 10.1016/j.freeradbiomed.2021.05.028.

312. Shuge Sun, Wei Shi, Yu Tang, Yu Han, Xueying Du, Weishang Zhou, Weixia Zhang, Changsen Sun, Guangxu Liu

.

The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on haematic parameters in a marine bivalve species and their potential mechanisms of action

Sci Total Environ.

2021 Aug 20;783:147003. doi: 10.1016/j.scitotenv.2021.147003.

(IF 6.551)

313. Jun Zhang, Haiyan Wang, Xizhi Sun

.

Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70

J Microbiol Biotechnol.

2021 Aug 28;31(8):1069-1078. doi: 10.4014/jmb.2103.03040.

314. Qiuli Wang, Dong Liang, Peng Shen, Yang Yu, Yuan Yan, Wei You

.

Hsa_circ_0092276 promotes doxorubicin resistance in breast cancer cells by regulating autophagy via miR-348/ATG7 axis

Transl Oncol.

2021 Aug;14(8):101045. doi: 10.1016/j.tranon.2021.101045.

(IF 3.558)

315. Lei Zhang, Qinghai Wang, Hang Su, Jiaxiang Cheng

.

Exosomes from Adipose Tissues Derived Mesenchymal Stem Cells Overexpressing MicroRNA-146a Alleviate Diabetic Osteoporosis in Rats

Cell Mol Bioeng.

2021 Aug 31;15(1):87-97. doi: 10.1007/s12195-021-00699-4.

(IF 1.72)

316. Weixin Zhao, Yixiao Yan, Zhongxiang Xiao, Meihong Wang, Mingjiang Xu, Zhe Wang, Yi Wang, Zaishou Zhuang, Daona Yang, Gaozhi Chen, Guang Liang

.

Bicyclol ameliorates nonalcoholic fatty liver disease in mice via inhibiting MAPKs and NF-κB signaling pathways

Biomed Pharmacother.

2021 Sep;141:111874. doi: 10.1016/j.biopha.2021.111874.

(IF 4.545)

317. Tianyi Wu, Guangke Wang, Xianting Zeng, Zhanwei Sun, Shichao Li, Weiwei Wang, Boyu Yu

.

Hsa_circ_0006232 promotes laryngeal squamous cell cancer progression through FUS-mediated EZH2 stabilization

Cell Cycle.

2021 Sep;20(18):1799-1811. doi: 10.1080/15384101.2021.1959973.

(IF 3.699)

318. Jiajun Xu, Zhixi Chen, Zheng Fang, Shixiong Chen, Ying Guo, Xianfeng Liu, Kai Chen, Shengjia Chen

.

Long non-coding RNA OIP5-AS1 promotes the progression of esophageal cancer by regulating miR-30a/VOPP1 expression

Oncol Lett.

2021 Sep;22(3):651. doi: 10.3892/ol.2021.12912.

(IF 2.311)

319. Jing Han, Lisong Wang, Huayi Lv, Jiajia Liu, Yiran Dong, Lei Shi, Qingshan Ji

.

EphA2 inhibits SRA01/04 cells apoptosis by suppressing autophagy via activating PI3K/Akt/mTOR pathway

Arch Biochem Biophys.

2021 Oct 30;711:109024. doi: 10.1016/j.abb.2021.109024.

(IF 3.391)

320. Yu Liu, Xun Cao, Jun Ge

.

Antioxidative Composites Based on Multienzyme Systems Encapsulated in Metal-Organic Frameworks

ACS Appl Mater Interfaces.

2021 Oct 6;13(39):46431-46439. doi: 10.1021/acsami.1c15506.

321. Jianqi Wang, Shuainan Wu, Zhaobao Li, Lu Liu, Ying Pang, Jianming Wei

.

Inhibition of nuclear factor kappa B inducing kinase suppresses inflammatory responses and the symptoms of chronic periodontitis in a mouse model

Int J Biochem Cell Biol.

2021 Oct;139:106052. doi: 10.1016/j.biocel.2021.106052.

322. Chen Mi, Dan Zhang, Yarui Li, Mudan Ren, Wenhui Ma, Guifang Lu, Shuixiang He

.

miR-4677-3p participates proliferation and metastases of gastric cancer cell via CEMIP-PI3K/AKT signaling pathway

Cell Cycle.

2021 Oct;20(19):1978-1987. doi: 10.1080/15384101.2021.1971375.

(IF 3.699)

323. Yingfei Wang, Zhong Wu, Yalin Huang, Ying Zhang

.

Hsa_circ_0004058 inhibits apoptosis of SRA01/04 cells by promoting autophagy via miR-186/ATG7 axis

Exp Eye Res.

2021 Oct;211:108721. doi: 10.1016/j.exer.2021.108721.

(IF 3.011)

324. Hui Li, Huimin Shu, Guangfang Qiao, Zhiyuan Dai

.

Visualization of implanted mesh in the pelvic reconstructive surgery using an X-ray-detectable thread

Arch Gynecol Obstet.

2021 Oct;304(4):965-973. doi: 10.1007/s00404-021-06180-x.

(IF 2.283)

325. Ai-Hua Wu, Xu-Long Chen, Long-Yi Guo, Dong-Fang Lu, Shan Lu, Ai-Ai Wang, Xue-Fang Liang

.

Downregulation of lncRNA IGF2-AS-encoded peptide induces trophoblast - cycle arrest

Reprod Biomed Online.

2021 Oct;43(4):598-606. doi: 10.1016/j.rbmo.2021.06.023.

(IF 3.218)

326. Yu Shi, Fuguo Yan, Fangping Wang, Linfeng Pan

.

MiR-128-3p suppresses tumor proliferation and metastasis via targeting CDC6 in hepatocellular carcinoma cells

Tissue Cell.

2021 Oct;72:101534. doi: 10.1016/j.tice.2021.101534.

(IF 1.837)

327. Meixue Chen, Jing Li, Jinfeng Wang, Yuan Le, Chunfeng Liu

.

SMYD1 alleviates septic myocardial injury by inhibiting endoplasmic reticulum stress

Biosci Biotechnol Biochem.

2021 Nov 24;85(12):2383-2391. doi: 10.1093/bbb/zbab167.

328. Yunfeng Yuan, Xue He, Xiang Li, Yan Liu, Yueliang Tang, Huiming Deng, Xinyuan Shi

.

Narciclasine induces autophagy-mediated apoptosis in gastric cancer cells through the Akt/mTOR signaling pathway

BMC Pharmacol Toxicol.

2021 Nov 9;22(1):70. doi: 10.1186/s40360-021-00537-3.

329. Weiming Hu, Yong Zhao, Lizhong Su, Zuliang Wu, Wenjing Jiang, Xiaoze Jiang, Ming Liu

.

Silencing the lncRNA NORAD inhibits EMT of head and neck squamous cell carcinoma stem cells via miR‑26a‑5p

Mol Med Rep.

2021 Nov;24(5):743. doi: 10.3892/mmr.2021.12383.

(IF 2.1)

330. Junpeng Feng, Jianhang Li, Peng Qie, Zhenhua Li, Yanzhao Xu, Ziqiang Tian

.

Long non-coding RNA (lncRNA) PGM5P4-AS1 inhibits lung cancer progression by up-regulating leucine zipper tumor suppressor (LZTS3) through sponging microRNA miR-1275

Bioengineered.

2021 Dec;12(1):196-207. doi: 10.1080/21655979.2020.1860492.

(IF 2.205)

331. Xing He, Jun Tang, He-Zhong Yan, Jiao-Xue Wang, Hai-Qing Li, Xiao-Wei Duan, Sen-Yuan Yu, Xi-Lu Hou, Guo-Bin Liao, Wei Liu

.

Anemoside B4 sensitizes human colorectal cancer to fluorouracil-based chemotherapy through src-mediated cell apoptosis

Aging (Albany NY).

2021 Dec 10;13(23):25365-25376. doi: 10.18632/aging.203751.

332. Qiuyan Li, Dengyuan Zhou, Fan Jia, Luping Zhang, Usama Ashraf, Yunchuan Li, Hongyu Duan, Yunfeng Song, Huanchun Chen, Shengbo Cao, Jing Ye

.

Japanese Encephalitis Virus NS1' Protein Interacts with Host CDK1 Protein to Regulate Antiviral Response

Microbiol Spectr.

2021 Dec 22;9(3):e0166121. doi: 10.1128/Spectrum.01661-21.

(IF 5.465)

333. Gang Zhao, Xiaobao Shi, Zhanbo Sun, Pengfei Zhao, Zaiming Lu

.

PAQR4 promotes the development of hepatocellular carcinoma by activating PI3K/AKT pathway

Acta Biochim Biophys Sin (Shanghai).

2021 Dec 8;53(12):1602-1613. doi: 10.1093/abbs/gmab143.

334. Zhaoliang Zhu, Peng Duan, Huping Song, Rongle Zhou, Tao Chen

.

Downregulation of Circular RNA PSEN1 ameliorates ferroptosis of the high glucose treated retinal pigment epithelial cells via miR-200b-3p/cofilin-2 axis

Bioengineered.

2021 Dec;12(2):12555-12567. doi: 10.1080/21655979.2021.2010369.

(IF 2.205)

335. Bo Li, Xianyi Liu, Guogang Wu, Jiawen Liu, Shouliang Cai, Fuxin Wang, Chunyu Yang, Jisheng Liu

.

MicroRNA-934 facilitates cell proliferation, migration, invasion and angiogenesis in colorectal cancer by targeting B-cell translocation gene 2

Bioengineered.

2021 Dec;12(2):9507-9519. doi: 10.1080/21655979.2021.1996505.

(IF 2.205)

336. Wenjun Zheng, Bing Liu, Enyi Shi

.

Perillaldehyde Alleviates Spinal Cord Ischemia-Reperfusion Injury Via Activating the Nrf2 Pathway

J Surg Res.

2021 Dec;268:308-317. doi: 10.1016/j.jss.2021.06.055.

(IF 1.841)

337. Tianyi Wu, Yanan Sun, Zhanwei Sun, Shichao Li, Weiwei Wang, Boyu Yu, Guangke Wang

.

Hsa_circ_0042823 accelerates cancer progression via miR-877-5p/FOXM1 axis in laryngeal squamous cell carcinoma

Ann Med.

2021 Dec;53(1):960-970. doi: 10.1080/07853890.2021.1934725.

(IF 3.243)

338. Feiluan Song, Anli Cai, Qianwen Ye, Xiang Chen, Lin Lin, Xi Hao

.

MiR-34b-3p Impaired HUVECs Viability and Migration via Targeting PDK1 in an In Vitro Model of Gestational Diabetes Mellitus

Biochem Genet.

2021 Dec;59(6):1381-1395. doi: 10.1007/s10528-021-10064-9.

(IF 2.027)

339. Sen Li, Faqing Xie, Kaiwen Shi, Jin Wang, Yan Cao, Yongxiang Li

.

Gossypol ameliorates the IL-1β-induced apoptosis and inflammation in chondrocytes by suppressing the activation of TLR4/MyD88/NF-κB pathway via downregulating CX43

Tissue Cell.

2021 Dec;73:101621. doi: 10.1016/j.tice.2021.101621.

(IF 1.837)

340. Huanhuan Zhu, Shaopeng Tong, Yan Cui, Xiaodong Wang, Minying Wang

.

Tanshinol alleviates ulcerative colitis by promoting the expression of VLDLR

Drug Dev Res.

2021 Dec;82(8):1258-1268. doi: 10.1002/ddr.21840.

341. Zhimeng Lv, Ming Guo, Xuelin Zhao, Yina Shao, Weiwei Zhang, Chenghua Li

.

IL-17/IL-17 Receptor Pathway-Mediated Inflammatory Response in Apostichopus japonicus Supports the Conserved Functions of Cytokines in Invertebrates

J Immunol.

2022 Jan 15;208(2):464-479. doi: 10.4049/jimmunol.2100047.

(IF 4.886)

342. Baiyin Zhong, Caixin Song, Qingfang He, Zhixi Chen, Qicheng Liao, Qiusheng Xiong, Shijie Wang, Yuansheng Xiao, Xing Xie, Yuankang Xie, Xiaonong Wang, Jianhong Zhang

.

LINC00630 promotes cholangiocarcinoma cell proliferation, migration and invasion by mediating the miR-199a/FGF7 axis

J Cancer.

2022 Jan 4;13(3):975-986. doi: 10.7150/jca.66850.

(IF 3.565)

343. Xiaoting Xi, Jia Ma, Qianbo Chen, Xuewei Wang, Yuan Xia, Xuewei Wen, Jin Yuan, Yan Li

.

Acteoside attenuates hydrogen peroxide-induced injury of retinal ganglion cells via the CASC2/miR-155/mTOR axis

Ann Transl Med.

2022 Jan;10(1):5. doi: 10.21037/atm-21-5630.

(IF 3.297)

344. Hongxi Wu, Guodong Li, Weiwei Chen, Wenbin Luo, Zhongyi Yang, Zhipeng You, Yuling Zou

.

Drp1 knockdown represses apoptosis of rat retinal endothelial cells by inhibiting mitophagy

Acta Histochem.

2022 Jan;124(1):151837. doi: 10.1016/j.acthis.2021.151837.

(IF 2.107)

345. Dong Zhao, Yueting Hou

.

Long non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) upregulates Cyclin T2 (CCNT2) in laryngeal papilloma through sponging miR-577/miR-1224-5p and blocking cell apoptosis

Bioengineered.

2022 Jan;13(1):1828-1837. doi: 10.1080/21655979.2021.2017653.

(IF 2.205)

346. Lei Zhang, Wei Zhao, Jinke Huang, Fangxuan Li, Jindong Sheng, Hualin Song, Ying Chen

.

Development of a Dendritic Cell/Tumor Cell Fusion Cell Membrane Nano-Vaccine for the Treatment of Ovarian Cancer

Front Immunol.

2022 Feb 17:13:828263. doi: 10.3389/fimmu.2022.828263.

(IF 5.085)

347. Jing Yang, Hongxia Li, Chi Zhang, Yafeng Zhou

.

Indoxyl sulfate reduces Ito,f by activating ROS/MAPK and NF-κB signaling pathways

JCI Insight.

2022 Feb 8;7(3):e145475. doi: 10.1172/jci.insight.145475.

(IF 6.205)

348. Wuping Yang, Jingcheng Zhou, Zedan Zhang, Kenan Zhang, Yawei Xu, Lei Li, Lin Cai, Yanqing Gong, Kan Gong

.

Downregulation of lncRNA APCDD1L-AS1 due to DNA hypermethylation and loss of VHL protein expression promotes the progression of clear cell renal cell carcinoma

Int J Biol Sci.

2022 Mar 21;18(6):2583-2596. doi: 10.7150/ijbs.71519.

(IF 4.858)

349. Longchang Xu, Jixiang Zhang, Jun Zhao, Cui Liu, Nian Li, Shudong Zhang, Zhenyang Wang, Min Xi

.

Plasmonic CuxS Nanocages for Enhanced Solar Photothermal Cell Warming

ACS Appl Bio Mater.

2022 Apr 18;5(4):1658-1669. doi: 10.1021/acsabm.2c00051.

350. Huanyuan Wang, Dexin Peng, Mei Gan, Zhisheng He, Yukang Kuang

.

CPEB3 overexpression caused by miR-106b-5p inhibition inhibits esophageal carcinoma in-vitro progression and metastasis

Anticancer Drugs.

2022 Apr 1;33(4):335-351. doi: 10.1097/CAD.0000000000001265.

351. Jia Liu, Qinyu Yao, Xinya Xie, Qi Cui, Tingting Jiang, Ziwei Zhao, Xiong Du, Baochang Lai, Lei Xiao, Nanping Wang

.

Procyanidin B2 Attenuates Nicotine-Induced Hepatocyte Pyroptosis through a PPARγ-Dependent Mechanism

Nutrients.

2022 Apr 22;14(9):1756. doi: 10.3390/nu14091756.

(IF 4.546)

352. Xiaolu Zhang, Liangming Wang, Nianlai Huang, Yiqiang Zheng, Liquan Cai, Qingfeng Ke, Shiqiang Wu

.

MicroRNA-455-3p regulates proliferation and osteoclast differentiation of RAW264.7 cells by targeting PTEN

BMC Musculoskelet Disord.

2022 Apr 9;23(1):340. doi: 10.1186/s12891-022-05266-0.

353. Hongchi Yu, Zhe Hou, Maolong Xiang, Fan Yang, Jia Ma, Li Yang, Xiaoyi Ma, Lifeng Zhou, Fugui He, Michael Miao, Xiaoheng Liu, Yunbing Wang

.

Arsenic trioxide activates yes-associated protein by lysophosphatidic acid metabolism to selectively induce apoptosis of vascular smooth muscle cells

Biochim Biophys Acta Mol Cell Res.

2022 Apr;1869(4):119211. doi: 10.1016/j.bbamcr.2022.119211.

354. Chang Jiang, Hongyan Li, Fei Liu, Linggai Shi, Jun Liu, Yujie Li

.

Hsa_circ_0000345 inhibits cell proliferation, migration and invasion of nasopharyngeal carcinoma cells via miR-513a-3p/PTEN axis

J Physiol Sci.

2022 May 12;72(1):10. doi: 10.1186/s12576-022-00834-4.

(IF 2.955)

355. Tiancong Du, Ke Zhang, Zhongbo Zhang, Aijia Guo, Guilin Yu, Yuanhong Xu

.

ITGBL1 transcriptionally inhibited by JDP2 promotes the development of pancreatic cancer through the TGF-beta/Smad pathway

Braz J Med Biol Res.

2022 May 16:55:e11989. doi: 10.1590/1414-431X2022e11989.

(IF 2.023)

356. Dan Mu, Xin Wang, Huiting Wang, Xuan Sun, Qing Dai, Pin Lv, Renyuan Liu, Yu Qi, Jun Xie, Biao Xu, Bing Zhang

.

Chemiexcited Photodynamic Therapy Integrated in Polymeric Nanoparticles Capable of MRI Against Atherosclerosis

Int J Nanomedicine.

2022 May 20:17:2353-2366. doi: 10.2147/IJN.S355790.

357. Meng-Yang Sun, Xue Zhang, Peng-Cheng Yu, Di Liu, Yang Yang, Wen-Wen Cui, Xiao-Na Yang, Yun-Tao Lei, Xing-Hua Li, Wen-Hui Wang, Peng Cao, Heng-Shan Wang, Michael X Zhu, Chang-Zhu Li, Rui Wang, Ying-Zhe Fan, Ye Yu

.

Vanilloid agonist-mediated activation of TRPV1 channels requires coordinated movement of the S1-S4 bundle rather than a quiescent state

Sci Bull (Beijing).

2022 May 30;67(10):1062-1076. doi: 10.1016/j.scib.2022.02.016.

358. Yibo Xu, Daofen Huang, Peng Liu, Zhuozhi Ouyang, Hanzhong Jia, Xuetao Guo

.

The characteristics of dissolved organic matter release from UV-aged microplastics and its cytotoxicity on human colonic adenocarcinoma cells

Sci Total Environ.

2022 Jun 20:826:154177. doi: 10.1016/j.scitotenv.2022.154177.

(IF 6.551)

359. Chao Liu, Xi Chen, Li Zhang, Jiaxiu Liu, Chunmei Li, Jinxi Zhao, Jun Pu, Peipei Tang, Bolin Liu, Xiaobin Huang

.

F-Box Protein 11 Suppresses Cell Proliferation and Aerobic Glycolysis in Glioblastomas by Mediating the Ubiquitin Degradation of Cdc25A

J Neuropathol Exp Neurol.

2022 Jun 20;81(7):511-521. doi: 10.1093/jnen/nlac033.

360. Qing Zhao, Xuexin He, Xiyi Qin, Yu Liu, Han Jiang, Jing Wang, Shuang Wu, Rui Zhou, Congcong Yu, Suling Liu, Hong Zhang, Mei Tian

.

Enhanced Therapeutic Efficacy of Combining Losartan and Chemo-Immunotherapy for Triple Negative Breast Cancer

Front Immunol.

2022 Jun 23:13:938439. doi: 10.3389/fimmu.2022.938439.

(IF 5.085)

361. Yue Chen, Bosong Zhang, Lina Yu, Jinyu Zhang, Yufang Zhao, Lifen Yao, Hongji Yan, Weiming Tian

.

A novel nanoparticle system targeting damaged mitochondria for the treatment of Parkinson's disease

Biomater Adv.

2022 Jul;138:212876. doi: 10.1016/j.bioadv.2022.212876.

362. Yi-Ren Qin, Chi-Qian Ma, Jian-Hua Jiang, Da-Peng Wang, Quan-Quan Zhang, Mei-Rong Liu, Hong-Ru Zhao, Qi Fang, Yang Liu

.

Artesunate restores mitochondrial fusion-fission dynamics and alleviates neuronal injury in Alzheimer's disease models

J Neurochem.

2022 Aug;162(3):290-304. doi: 10.1111/jnc.15620.

(IF 4.066)

363. Xueyan Guo, Yulong Li, Bingbing Wan, Yifei Lv, Xue Wang, Guisheng Liu, Ping Wang

.

KAT7 promoted gastric cancer progression through promoting YAP1 activation

Pathol Res Pract.

2022 Sep:237:154020. doi: 10.1016/j.prp.2022.154020.

(IF 2.05)

364. Xiang Li, Yuying Wang, Yuanyuan Zhang, Bin Liu

.

Overexpression of MCAM induced by SMYD2-H3K36me2 in breast cancer stem cell properties

Breast Cancer.

2022 Sep;29(5):854-868. doi: 10.1007/s12282-022-01365-x.

(IF 2.695)

365. Ying Yang, Ning Wang, XinXin Tian, XiaoLi Wang, Jing Yang, XiGang Leng, HaiLing Zhang

.

Synergy of Polydopamine Nanovaccine and Endostar Alginate Hydrogel for Improving Antitumor Immune Responses Against Colon Tumor

Int J Nanomedicine.

2022 Oct 12:17:4791-4805. doi: 10.2147/IJN.S372048.

366. Jia Wang, Jiayin Liu, Qinghai Dong, Yang An, Jun Su, Hongliu Xie, Bo Sun, Jihua Liu

.

The Influence of Heparan Sulfate on Breast Amyloidosis and the Toxicity of the Pre-fibrils Formed by β-casein

Protein J.

2022 Oct;41(4-5):543-549. doi: 10.1007/s10930-022-10071-8.

(IF 1.317)

367. Qin Xiao, Yao-Yao Sun, Zhan-Jun Lu, Shan-Shan Li, Riguga Su, Wen-Lin Chen, Lin-Lin Ran, Surina Zhang, Kaixin Deng, Wen-Zhen Yu, Wenqian Chen

.

Protective effects of safranal on diabetic retinopathy in human microvascular endothelial cells and related pathways analyzed with transcriptome sequencing

Front Endocrinol (Lausanne).

2022 Nov 16:13:945446. doi: 10.3389/fendo.2022.945446.

368. Lingyan Chen, Dejian Chen, Jiwei Li, Lipeng He, Ting Chen, Dandan Song, Shuang Shan, Jiaxin Wang, Xiaoang Lu, Bin Lu

.

Ciclopirox drives growth arrest and autophagic cell death through STAT3 in gastric cancer cells

Cell Death Dis.

2022 Nov 28;13(11):1007. doi: 10.1038/s41419-022-05456-7.

(IF 6.304)

369. Yang Xiang, Lujie Si, Ying Zheng, Huiming Wang

.

Shikonin enhances chemosensitivity of oral cancer through β-catenin pathway

Oral Dis.

2022 Nov 30. doi: 10.1111/odi.14458.

(IF 2.613)

370. Xiao-Zhou Zou, Yi-Wen Zhang, Zong-Fu Pan, Xiao-Ping Hu, Yin-Ning Xu, Zhong-Jie Huang, Zhi-Yong Sun, Meng-Nan Yuan, Jia-Na Shi, Ping Huang, Ting Liu

.

Gentiopicroside alleviates cardiac inflammation and fibrosis in T2DM rats through targeting Smad3 phosphorylation

Phytomedicine.

2022 Nov:106:154389. doi: 10.1016/j.phymed.2022.154389.

(IF 4.268)

371. Gaowa Sharen, Haidong Cheng, Xiuhua Hu, Jie Miao, Defang Zhao

.

M1‑like tumor‑associated macrophages enhance proliferation and anti‑apoptotic ability of liver cancer cells via activating the NF‑κB signaling pathway

Mol Med Rep.

2022 Nov;26(5):331. doi: 10.3892/mmr.2022.12847.

(IF 2.1)

372. Lei Hou, Xinxin Tong, Yang Pan, Ruihan Shi, Changzhe Liu, Jinshuo Guo, Yongyan Shi, Xiaoyu Yang, Yong Wang, Xufei Feng, Jianwei Zhou, Jue Liu

.

Seneca Valley Virus Enters PK-15 Cells via Caveolae-Mediated Endocytosis and Macropinocytosis Dependent on Low-pH, Dynamin, Rab5, and Rab7

J Virol.

2022 Dec 21;96(24):e0144622. doi: 10.1128/jvi.01446-22.

(IF 4.501)

373. Yuhan Zhang, Xiaoxia Du, Qihao Shi, Wenxiang Xiao, Hua Li

.

Precise Control of Glioma Cell Apoptosis Induced by Micro-Plasma-Activated Water (μ-PAW)

Micromachines (Basel).

2022 Dec 4;13(12):2145. doi: 10.3390/mi13122145.

374. Jing Zhang, Jian Ping, Na Jiang, Lieming Xu

.

Resveratrol inhibits hepatic stellate cell activation by regulating autophagy and apoptosis through the SIRT1 and JNK signaling pathways

J Food Biochem.

2022 Dec;46(12):e14463. doi: 10.1111/jfbc.14463.

(IF 1.662)

375. Yu Shen, Lingfeng Yuan, Guanfu Wu, Wenbo Yuan, Zhengxiang Cheng, Jing Yan, Jing Zhang, Youtian Tao, Ziyi Yu

.

Microdroplet-Facilitated Assembly of Thermally Activated Delayed Fluorescence-Encoded Microparticles with Non-interfering Color Signals

ACS Appl Mater Interfaces.

2023 Jan 11;15(1):591-598. doi: 10.1021/acsami.2c18870.

376. Jing-Xing Zhang, Kai-Ge Zhou, Yan-Xin Yin, Ling-Jing Jin, Wei-Fang Tong, Jia Guo, Li-Hua Yu, Xian-Cheng Ye, Ming Jiang

.

Mesencephalic astrocyte-derived neurotrophic factor (MANF) prevents the neuroinflammation induced dopaminergic neurodegeneration

Exp Gerontol.

2023 Jan:171:112037. doi: 10.1016/j.exger.2022.112037.

(IF 3.376)

377. Hua Zhou, Wei-Hong Song

.

LncRNA HCG11 Accelerates Atherosclerosis via Regulating the miR-224-3p/JAK1 Axis

Biochem Genet.

2023 Feb;61(1):372-389. doi: 10.1007/s10528-022-10261-0.

(IF 2.027)

378. Xuemei Huang, Zhiqin Jia, Xiangyue Li, Zhilan Hu, Xiaolan Yu, Jiyi Xia

.

Asiaticoside hampers epithelial-mesenchymal transition by promoting PPARG expression and suppressing P2RX7-mediated TGF-β/Smad signaling in triple-negative breast cancer

Phytother Res.

2023 May;37(5):1771-1786. doi: 10.1002/ptr.7692.

(IF 4.087)

浏览此产品的顾客也同时浏览:

更多

ST316

500mg

MTT

C0037

100次

Cell Counting Kit-8 (CCK-8试剂盒)

C0038

500次

Cell Counting Kit-8 (CCK-8试剂盒)

C0009M

2500次

MTT细胞增殖及细胞毒性检测试剂盒

C0016

100次

乳酸脱氢酶细胞毒性检测试剂盒

ST1537-250mg

250mg

MTT (98%, Reagent grade)

ST1537-1g

1g

MTT (98%, Reagent grade)

S0033S

>100次

活性氧检测试剂盒

C2015M

500次

Calcein/PI细胞活性与细胞毒性检测试剂盒

C0035

100次

WST-1细胞增殖及细胞毒性检测试剂盒

C0071S

50-500次

BeyoClick™ EdU-488细胞增殖检测试剂盒

C0041

100次

Enhanced Cell Counting Kit-8 (增强型CCK-8试剂盒)

最近查看的产品:

碧云天网站

微信公众号

产品 | Product

产品种类

技术服务

产品订购

支持 | Support

技术咨询

信息反馈

资源下载

实用工具

公司 | Company

关于我们

公司荣誉

急聘人才

合作机会

官方账号 | Official Accounts

碧云天网站

微信公众号

微信视频号

抖音官方号

微博官方号

B站官方号

Copyright 2001-2024 Beyotime Biotechnology. All rights reserved. 碧云天生物版权所有

沪ICP备14016637号-2

上海工商

沪公网安备 31011702005897号

购物车

会员

顶部

用户名:

密码:

校验码:

后续自动登录

找回密码

注册

这可能是史上最全面的 MTT 大汇总了吧! - 实验方法 - 丁香通

这可能是史上最全面的 MTT 大汇总了吧! - 实验方法 - 丁香通

丁香通

丁香园

论坛

丁香客

医药招聘

丁香医生

更多

会议

调查派

用药助手

丁当铺

丁香搜索

医药数据库

来问医生

我要登录

|

免费注册

|

我的丁香通

卖家:

成为卖家

更多合作

买家:

买家中心

移动端

发布求购 用户服务

产品 实验 品牌

搜索

搜产品

搜产品

搜实验

搜品牌

大家都在搜

免费发布求购

搜索

发布求购

全部产品分类

首页

丁香实验new

促销

试用中心

学术专区

资讯

品牌学堂

丁香学社

首页 实验方法 这可能是史上最全面的 MTT 大汇总了吧!

这可能是史上最全面的 MTT 大汇总了吧!

这可能是史上最全面的 MTT 大汇总了吧!

来源: 丁香园

3573 阅读

这可能是史上最全面的 MTT 大汇总了吧!有问题?丁香实验库全新大升级,10000+ 实验方法任你选

前往丁香实验

实验前应明确的问题1. 选择适当的细胞接种浓度。一般情况下,96 孔培养板的一内贴壁细胞长满时约有 105 个细胞。但由于不同细胞贴壁后面积差异很大,因此,在进行 MTT 试验前,要进行预实验检测其贴壁率、倍增时间以及不同接种细胞数条件下的生长曲线,确定试验中每孔的接种细胞数和培养时间,以保证培养终止致细胞过满。这样,才能保证 MTT 结晶形成酌量与细胞数呈的线性关系。否则细胞数太多敏感性降低,太少观察不到差异。2. 药物浓度的设定。一定要多看文献,参考别人的结果再定个比较大的范围先初筛。根据自己初筛的结果缩小浓度和时间范围再细筛。切记!否则,可能你用的时间和浓度根本不是药物的有效浓度和时间。3. 时间点的设定。在不同时间点的测定 OD 值,输入 excel 表,最后得到不同时间点的抑制率变化情况,画出变化的曲线,曲线什么时候变得平坦了(到了平台期)那个时间点应该就是最好的时间点(因为这个时候的细胞增殖抑制表现的最明显)。4. 培养时间。200ul 的培养液对于 10 的 4~5 次方的增殖期细胞来说,很难维持 68 h,如果营养不够的话,细胞会由增殖期渐渐趋向 G0 期而趋于静止,影响结果,我们是在 48 h 换液的。5.MTT 法只能测定细胞相对数和相对活力,不能测定细胞绝对数。做 MTT 时,尽量无菌操作,因为细菌也可以导致 MTT 比色 OD 值的升高。6. 理论未必都是对的。要根据自己的实际情况调整。7. 实验时应设置调零孔,对照孔,加药孔。调零孔加培养基、MTT、二甲基亚砜。对照孔和加药孔都要加细胞、培养液、MTT、二甲基亚砜,不同的是对照孔加溶解药物的介质,而加药组加入不同浓度的药物。8. 避免血清干扰。用含 15% 胎牛血清培养液培养细胞时,高的血清物质会影响试验孔的光吸收值。由于试验本底增加,会试验敏感性。因此,一般选小于 10% 胎牛血清的培养液进行。在呈色后,尽量吸净培养孔内残余培养液。实验步骤贴壁细胞:1. 收集对数期细胞,调整细胞悬液浓度,每孔加入 100ul, 铺板使待测细胞调密度至 1000 - 10000 孔,(边缘孔用无菌 PBS 填充)。2.5%CO2,37℃ 孵育,至细胞单层铺满孔底(96 孔平底板), 加入浓度梯度的药物, 原则上,细胞贴壁后即可加药,或两小时,或半天时间,但我们常在前一天下午铺板,次日上午加药. 一般 5 - 7 个梯度, 每孔 100ul, 设 3 - 5 个复孔. 建议设 5 个,否则难以反应真实情况3.5%CO2,37℃ 孵育 16 - 48 小时,倒置显微镜下观察。4. 每孔加入 20ulMTT 溶液(5 mg/ml,即 0.5%MTT),继续培养 4 h。若药物与 MTT 能够反应,可先离心后弃去培养液,小心用 PBS 冲 2 - 3 遍后,再加入含 MTT 的培养液。5. 终止培养,小心吸去孔内培养液。6. 每孔加入 150ul 二甲基亚砜,置摇床上低速振荡 10 min,使结晶物充分溶解。在酶联免疫检测仪 OD490nm 处测量各孔的吸光值。7. 同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜)悬浮细胞:1)收集对数期细胞,调节细胞悬液浓度 1×106 /ml,按次序将①补足的 1640(无血清)培养基 40ul ;②加 Actinomycin D(有毒性)10ul 用培养液稀释 lg/ml,需预试寻找最佳稀释度,1:10 - 1:20);③需检测物 10ul;④细胞悬液 50ul(即 5×104cell/孔),共 100ul 加入到 96 孔板(边缘孔用无菌水填充)。每板设对照(加 100(储存液 100 1640)。2)置 37℃,5%CO2 孵育 16 - 48 小时,倒置显微镜下观察。3)每孔加入 10 ul MTT 溶液(5 mg/ml,即 0.5%MTT),继续培养 4 h。(悬浮细胞推荐使用 WST- 1,培养 4 h 后可跳过步骤 4),直接酶联免疫检测仪 OD570nm(630nm 校准)测量各孔的吸光值)4)离心(1000 转 x10 min),小心吸掉上清,每孔加入 100 ul 二甲基亚砜,置摇床上低速振荡 10 min,使结晶物充分溶解。在酶联免疫检测仪 OD570nm(630nm 校准)测量各孔的吸光值。5)同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜),每组设定 3 复孔。MTT 的配制MTT 一般最好现用现配,过滤后 4ºC 避光保存两周内有效,或配制成 5 mg/ml 保存在- 20 度长期保存,避免反复冻融,最好小剂量分装,用避光袋或是黑纸、锡箔纸包住避光以免分解。我一般都把 MTT 粉分装在 EP 管里,用的时候现配,直接往培养板中加,没必要一下子配那么多, 尤其当 MTT 变为灰绿色时就绝对不能再用了。MTT 有致癌性,用的时候小心, 有条件最好带那种透明的簿膜手套. 配成的 MTT 需要无菌,MTT 对菌很敏感;往 96 孔板加时不避光也没有关系,毕竟时间较短,或者你不放心的时候可以把操作台上的照明灯关掉.配制 MTT 时用用 PBS 溶解, 也有人用生理盐水配,60℃ 水浴助溶。PBS 配方:Nacl 8 gKcl 0.2 gNa2 HPO4 1.44 gKH2PO4 0.24 g调 ph 7.4定容 1L关于细胞的接种 (铺板)细胞过了 30 代以后就不要用了, 因为状态不好了; 培养板要用好的(最好进口板),不好的板或重复利用的板只可做预实验。接种时最好按照预实验摸索出的密度接种, 因为细胞密度在 10000 /ml 左右时,所测得的 OD 值的区间即细胞抑制率(或者增值率)的所呈现的线性关系最好,结果最可信。如果铺的太稀细胞的杀伤不会很明显,太密细胞可能都会凋亡,因为细胞长的太快营养会不够,最后导致死亡。且而细胞过密或者过少,增殖都会过快或者过慢,其增值率线性关系不佳。故而 MTT 细胞密度多采用 10000 /ml,100ul/孔。细胞密度要根据不同细胞的特点来定. 如果你做的药品对细胞具有刺激作用那么取小点的细胞浓度,如果你做的药品对细胞具有抑制作用那么取大点的细胞浓度,这样与对照的区别更明显,数据更好。悬浮细胞每孔的细胞数可达到 105, 贴壁细胞可为 103 - 104.其它的声音:1. 首先细胞的接种密度一定不能过大,一般每孔 1000 个左右就够了,我认为宁少勿多。尤其是对于肿瘤细胞。10000 /孔是太高了,这样即使药物有作用,MTT 方法也是表现不出的,最佳点板浓度在 4000 - 5000 /孔,太少的话 SD 值会很大。2.MTT 本身就是比较粗的实验,增殖率 10% 左右的波动都不算奇怪。特别是新手,20% 的波动也是常见的,所以很可能是技术原因引起的,特别是种板技术一定要过关。3. 我做的是肿瘤细胞的 MTT 实验, 这种细胞长的很快一开始我是用 100000 /ML 的浓度来接种的, 结果细胞长的太满结果是没有梯度也没有线性关系. 后来调整浓度, 用过 40000~80000 /ML 的浓度都做过 MTT 实验, 结果发现做的结果比较好点的是 60000~70000 /ML 的浓度组的. 用 40000 /M 的浓度的组, 由于细胞少, 药物作用的梯度还是有, 只是没有很好的线性关系. 还有根据细胞生长速度以及药物的特性 (有时间依赖性和浓度依赖性的药物) 来确定培养时间是 48 小时还是 72 小时.注意细胞悬液一定要混匀,已避免细胞沉淀下来,导致每孔中的细胞数量不等,可以每接几个就要再混匀一下。加样器操作要熟练,尽量避免人为误差。虽然移液器比移液管精确得多,但是如果操作不熟,CV 会在 8% 左右。另外,吹散次数过多也会影响细胞活力。所以要熟练鞋、快些上板。首先说说我的一点经验:1. 吹打时悬液总量不能太多,达到吸管吸液量的 3 到 4 倍,可能比较容易混匀。10 ml 的离心管里面最好装 3~4 ml 的悬液:悬液太少容易吹起很多气泡,悬液太多又不容易吹成单细胞悬液。。。2. 吸管的吸液量最好在 1 ml 左右:吸液量过多的话,一下吸起很多液体,管中所剩就很少,这样吹打容易起泡,吸液量过少,吹打的力度就不够,吹打就会不均匀。如果是吸液量 1 ml 多的吸管,总液量在 5 ml 左右为益3. 吸的时候要在悬液底部,然后提起来一点,但是吹下去的时候不要离开液面,否则容易吹打出气泡。4. 吹打次数 100 左右,就可以吹打均匀了(有人认为加细胞前吹打 30-50 次基本就差不多均匀了。加细胞的时候每接种 2 孔反复吹打 3 次,每吹打 3 次后qiang头垂悬与细胞悬液中 5 秒钟,然后再以一定的速度吸取悬液。)5. 向每孔中用*头加入细胞时不要太快,否则你会发现细胞在加入的瞬间会由于*头的冲力在孔底聚集一堆,一般都在孔的底部中央,而周边很少,这种不均匀的分散会产生接触抑制,影响细胞的生长。所以速度不能太快也不能太慢。我习惯每块板加完后平握手中,向左 3 下,向右 3 下,在往返回复 3 下移动,目的是使得细胞能分散的均匀些。(铺板技术是 MTT 实验的关键,也是基础,一定要练好。曾经有同学用漩涡振荡器混匀细胞,最后细胞全死了,建议不要采用这种方法混匀细胞。加入 MTT个人认为 MTT 最关键的是你的细胞数目和你加入真正起作用的的 MTT 的适当比例,具体细胞数目和真正起作用的的 MTT 之间的关系确实不好确定,我认为 MTT 多加一些比少加好一些MTT 的量各家报道不同,一般是过量的,所以 10ul 即够了。如果不使用 96 孔板,培养基超过 100ul,MTT 按照 10% 的比例加入. 加入 MTT 以后振荡一下让 MTT 与培养基混匀,不过这个应该关系不大。如加入 MTT 后都有个别孔立即变为蓝黑色,则污染的可能性極大, 另外 MTT 稀釋後加入細胞前還是需要以過濾的方式滅菌為宜. 且在加 MTT 前可以先在镜下观察,看看是否有孔染菌,染菌的孔常常是临近的因为血清中白蛋白对大部分的药物都有结合效应,所以可以单独将药物和 MTT 加在一起,看会不会起反应。如果不起反应,就不用去除含药物的培液,直接加 MTT 即可。

如何清除上清百家争鸣:1. 加 DMSO 前要把液体吸掉,但培养液里的紫色结晶可能会吸去,可在这之前先用平板离心机离心 96 孔板,2000r,5 分钟,然后吸掉上清 (如果是悬浮细胞,则推荐此法, 悬浮细胞要离心 2500rpm×10 min. 且其做 MTT 最好用圆底型 96 孔板, 清除上清时注意不要把下面的结晶颗粒吸掉, 建议各孔吸弃 150 - 160ul 即可)。2. 我每次将 MTT 加入后,再孵育四个小时,然后用离心机离心 1000 G,5 min。但是用*小心地吸上清,还是会将一小部分蓝色结晶吸出。所以还是建议翻转倒扣的方法吧!3. 另外,可以直接将板翻转倒扣(垫几层滤纸)2-3 次,比用「吸」的办法更不容易使细胞脱离出来。可以轻拍,或者倾斜一点帮助吸液,发现紫色结晶几乎没有肉眼可见的掉脱,但前提是你本身细胞贴壁要比较牢,半贴壁生长的细胞容易脱离。假如药物作用时间长的话,阴性对照组可能由于细胞过多而使加入MTT后形成的结晶漂起来,这样就不能直接倒掉上清。4. 做 MTT 时,这一步骤一定要小心,不要采用倒的方式。因为贴壁不牢的细胞会被倒掉,从而影响 OD 值。悬浮细胞,不要翻板,离心后也不要翻板,这个方法害死人。5. 加完 MTT 反应 3-4 h 后,从培养箱取出 96 孔板的动作要轻柔,避免振荡结晶, 使其滑落. 你可以试着将 96 孔板倾斜 30 度角,然后用*尖慢慢吸,有的细胞可以用排枪一起吸,有的则要耐心的一个个用*头吸,*尖的力度和方向要保证每个孔都一致。不要让*头接触到孔底,且一旦倾斜孔板后就不要反复倾斜放平,这样也会使结晶脱落。6. 用医用的注射器加上针头吸取液体的,吸取时要把板子斜放,沿着壁吸取就好了!这次 MTT 我用 1 ml 针头仔细吸培养液, 觉得比其它方法可靠, 一般不会吸走紫色结晶.避免清除上清而改进的方法由于一般可离心 96 孔板的离心机不好找。既使是贴壁细胞做 MTT 时,用 DMSO 溶解得到结果也不好,不是得不到预期结果就是可重复性差。解决方法 1: 用以下文献方法:周建军等,评价抗癌物质活性的改良 MTT 方法,中国医药工业杂志,1993,24(10):455 - 457具体方法:

配三联溶解液:10%SDS,5% 异丁醇,0.012mol/LHCL,蒸馏水溶解。

三联溶解液:SDS10 g,异丁醇 5 ml,10M HCl 0.1 ml 用双蒸水溶解配成 100 ml 溶液操作:在培养板上加一定密度的细胞悬液,90ul/孔;如需给药,则再于同时 (悬浮细胞) 或 4 h 后 (贴壁细胞) 加入不同浓度的药物 10ul/孔,均设三复孔。另外,每块板上另没一个调零孔 (只加培养液,不含细胞和药物)。培养 2d 后,加入 MTT 溶液 20ul/孔,继续培养 4 h,然后加入上述三联液 100ul/孔,于 37 度放置过夜后,用酶标仪测各孔 A570 值。优点:简化操作,提高了可靠性。解决方法 2:日本同仁有一种新试剂 CCK- 8 试剂, CCK- 8 试剂可用于简便而准确的细胞增殖和毒性分析。其基本原理为:该试剂中含有 WST–8[其化学名称为:2 -(2 -甲氧基- 4 -硝基苯基)- 3 -(4 -硝基苯基)- 5 -(2,4 -二磺酸苯)- 2 H-四唑单钠盐],它在电子载体 1 -甲氧基- 5 -甲基吩嗪 硫酸二甲酯(1 -Methoxy PMS)的作用下被细胞线粒体中的脱氢酶还原为具有高度水溶性的黄色甲 染料(Formazan dye)。生成的甲 物的数量与活细胞的数量成正比,因此可利用这一特性直接进行细胞增殖和毒性分析。CCK- 8 试剂中已预先配入了进行细胞增殖和毒性分析所需的成分,无需再用缓冲液或培养基进行稀释;同时,CCK- 8 试剂无需任何放射性同位素和有机溶剂。因此,无需特别的技巧,就可使每一位使用者准确、快速地得到重现性好的实验结果。★优 点1、简 便 只需一步即可得到结果2、省 时 毋需预制,即开即用3、安 全 毋需放射性同位素和有机溶剂4、快 速 省去了溶解除沉操作5、灵敏度高 灵敏度高于 MTT6、重现性好 步骤少;无损失;结果准确就是比较贵,如果经费充足,用这个是不错的。★进行细胞增殖分析的使用方法:1、接种细胞悬液 100μl 于 96 孔板内,预先置于 37℃,5% CO 2 饱和湿度培养箱内培养。2、在每个孔内加入 10μl 的 CCK- 8 试剂。3、把培养板放在培养箱内培养 1 - 4 小时*。4、在 450nm 波长处测定吸光度,参比波长为 600nm 或 600nm 以上。解决方法 3:使用 MTS解决方法 4:加入 DMSO在同一批实验中最好不要更换 DMSO。加 DMSO 前把孔中液体尽量弃干净,没有去掉上清直接加 DMSO,一是沉淀会很难溶解. 二培养液的颜色在检测时也能被测到, 会对最后结果造成影响。但前提是不能把细胞也一起吸掉,因为这样带来的误差要远远大于培养液没弃干净带来的误差, 所以要在保证细胞不被吸掉的前提下,尽量把培养液吸掉。如果培养液没弃干净,空白孔也要留有等量的培养液,这样在检测时可以尽量去除培养液的影响,DMSO 的量也可为 100ul 或 150ul.1. 加了 DMSO 后用振荡器轻轻振荡 5-10 min, 时间控制尽量严格一点, 放置时间长了会影响结果, 值会偏大, 且结果不可信.2. 加入 DMSO 后可用排枪反复抽吸助溶,溶解后尽快检测。如果实验孔不多,建议用此法,因其比振荡溶解效果好。3. 或放入 37 度放孵箱 15 分钟溶解结晶。振荡是为了让甲臜溶解,这样才能更好的测量吸光度,振荡 96 孔板有专的振荡器,目的: 扎破气泡. 有气泡存在时, 由于其对光的反射与折射作用 (酶标仪的原理是通过测定特定波长透过样品的吸光度推测样品内特定物质的浓度), 会导致结果偏移.OD 值的测定至于测定波长的选择是因显色溶液而异的,对于 DMSO,溶解后呈紫(红)色,490nm 有最大吸收值, 而 ATCC 公司的 MTT 试剂盒用的不是 DMSO,它的测定波长是 570。(就如 ELISA 实验选用 OPD 作底物测定波长是 492,选用 TMB 显色液则用 450); 而对于 SDS 和酸化异丙醇,则选用 570nm,并且建议以 655nm 作为参考波长。DMSO 溶后 10 分钟内测,越放颜色越深,而SDS做为溶解液测吸收光值,其值可在三天内保持不变.细胞密度偏大测出的吸光度也会偏大,细胞密度小吸光度也会偏小;另外跟细胞状态也有关系,细胞状态不好的话,吸光度值也会低的;细胞数目少,或者是培养的时间短,OD 值也会偏低。如果各个孔的孔间差异性特别明显的话说明有可能存在污染, 空白孔的 OD 值太高,很可能是细菌污染。复孔直接的 OD 值差别一般应在 0.1-0.15,差别太大考虑:1. 接种细胞数不均匀,或是接种太多,应保证每孔一致,一般是每孔 1000-10000 个。可以细胞细胞计数后,加入细胞悬液,再补培养基到预定体积,并轻轻吹打几次,使细胞均匀分布,这样比直接加入预定体积的细胞悬液要好,接种时应加含血清培养基。2. 贴壁时间:18-24 h,如果不够,未悬浮的细胞会被吸掉。一般为了实验的准确,每个浓度可以设 5-6 个复孔,可以最后统计时,可以除去一个最高值和一个最低值,或者除去其中数据离谱的值,这些离谱数字的出现与细胞是否污染,细胞是否在培养期间死去,是否培养液蒸发过多,加 MTT 液是否准确,在 37℃,5% 二氧化碳培养箱中孵育时间是否一定(1-4 小时)等有密切的关系,当然测定 OD 值的仪器工作状态是否正常也非常重要!(一般开机预热 20 min)。MTT 方法的吸收度在 0.2~0.8 之间误差较小。这和分析化学中的lambert-beer 定律有关, 对朗伯-比尔定律的偏离在吸光光度分析中,经常出现标准曲线不呈直线的情况,特别是当吸光物质浓度较高时,明显地看到通过原点向浓度轴弯曲的现象(吸光度轴弯曲)。这种情况称为偏离朗伯-比尔定律。若在曲线弯曲部分进行定量,将会引起较大的误差。在吸光光度分析中,仪器测量不准确也是误差的主要来源。任何光度计都有一定的测量误差。这些误差可能来源于光源不稳定,实验条件偶然变动,读数不准确等。在光度计中,透射比的标尺刻度均匀。吸光度标尺刻度不均匀。对于同一仪器,读数的波动对透射比为一定值;而对吸光度读数波动则不再为定值。吸光度越大,读数波动所引起的吸光度误差也越大透射比很小或很大时,浓度测量误差都较大,即光度测量最好选吸光度读数在刻度尺的中间而不落两端。待测溶液的透射比 T 在 15%~65% 之间,或使吸光度 A 在 0.2~0.8 之间,才能保证测量的相对误差较小。当 A = 0.434(或透射比 T = 36.8%) 时,测量的相对误差最小。其它的声音:1. 最好用 570nm 波长的滤光片,因为 MTT 在这个波长的吸光度是峰值,换句话说灵敏度高。用其它波长的也有,一般是 490nm,但我的经验灵敏度降低一半。2. 我们用的 BIO-TEK 公司的 ELx800, 一般值在 2 以下都是可靠的, 如果复孔之间值相差太大就要考虑是否是实验过程中的误差. 我曾经看到园子的有些帖子报道说 OD 值大概在 0.2 - 1.2 范围内与活细胞数有较好的线性关系,但 OD 值在 0.3 - 0.9 范围内可能更佳,若你的 OD 值不在这个范围内则你实验的细胞数可能不太合适,应调整你的细胞数。边缘效应96 孔板四周一圈的孔一般只做空白,不养细胞,否则这四行的数据会偏高或偏低,96 孔板在培养箱中,由于湿度不够,而培养箱由于具有一定的温度,由于温度梯度使得边缘的孔水分蒸发较快,导致培养基中各种成分浓度变化增大,导致细胞状态不同。对于这种现象,要保证培养箱中的湿度,减少开关培养箱的次数和时间。解决方法: 将孔板周围的一圈孔全部不用,影响非常大,而且最外一圈一定要加水、PBS 或者培养液,只要能防止蒸发就可以.关于如何计算 IC50(1) 改良寇式法:lgIC50 = Xm-I(P-(3 -Pm-Pn)/ 4)Xm:lg 最大剂量I:lg(最大剂量/相临剂量)P: 阳性反应率之和Pm: 最大阳性反应率Pn: 最小阳性反应率举个例子:各组浓度 0.1、0.01、0.001、0.0001、0.00001、0.000001,稀释倍数为 10,最大浓度为 0.1,抑制率为 0.95、 0.80、0.65、0.43、0.21,0.06。代入计算公式:Pm = 0.95Pn = 0.06P = 0.95 + 0.80 + 0.65 + 0.43 + 0.21 + 0.06 = 3.1Xm = lg0.1 =- 1lgI = lg0.1 / 0.01 = 1lgIC50 =- 1 - 1 *(3.1 -(3 - 0.95 - 0.06)/ 4)=- 3.6025IC50 = 0.00025(2)Bliss 法: 自己查阅书籍(3)IC50 计算软件,见下面附件(4)自己用 EXCEL 做趋势线来求 IC50,关于 LD50 的方法与此相似!(5)在线求 IC50 或 EC50:http://chiryo.phar.nagoya-cu.ac.jp/javastat/JavaStat-j.htm结果统计学处理所有数值以 x±s 表示,应用 SPSS 软件进行方差分析,p<0.05 时为相差显著,p<0.01 时为相差非常显著。可以以时间为横轴,光吸收值为纵轴绘制细胞生线,专门公式求 IC50。或计算抑制率。细胞死亡率%= OD 对照组-OD 实验组/OD 对照组excel 表中可以做两两比较的 T-test, 这个你可以参考一下;你的数据应该用多个样本均数的 T-test,方差分析也可。用的软件是 SPSS 或者 SAS。孔板的重复利用:培养板要用好的(最好进口板),不好的板或重复利用的板只可做预实验。一般贴壁生长的细胞用重复利用的培养板效果不是很好,因为培养板表层在生产时涂有一层促进细胞贴壁的物质,在清洗后多半会失去。悬浮或是半悬浮生长的细胞还可以。建议不要用太多次,即使是进口的板子使用次数也不要超过 3 次, 底值最好在测得值的 1 / 3 一下。强烈建议培养板不要重复使用:1、泡酸是可以,但是泡完酸的板子很不利于细胞的生长,会出现帖壁不好,细胞生长缓慢等情况.2、这样的板子消毒灭菌很不彻底,如果有万一, 则因小失大.3、重复用的板子洗不干净在培养过程中易出现杂质.重复利用时做法 1:洗净后用 2%NaoH 浸泡 4 小时,再用 1% 稀盐酸浸泡 4 小时,冲洗 15 遍,蒸馏水冲洗 3 遍,烘干,UV 照射过夜 (紫外 2 小时以上消毒即可)做法 2:泡酸 2-4 小时,老师让我们别超过 4 小时,(普通的玻璃仪器是过夜)。捞出,冲洗干净,烘干后,UV 照射过夜。估计跟其他收集在一起,钴 60 照射消毒.做法 3:1. 做完MTT后用大水流尽量将板冲净,然后用洗衣粉水泡几个小时(小心最好让洗衣粉先化开)。2. 用自来水冲净洗衣粉水,倒扣晾干.3. 重铬酸钾加浓硫酸配成的酸液中浸泡过夜泡洗液 (六小时以上即可) 后自来水洗净(20 次左右)每个孔都要处理 4. 用去离子水冲洗 3 遍,双蒸水冲洗 3 遍,烤干 5. 超净台中紫外线照射 2 个小时左右,就可以用了,不可以高压。做法 4:1、测完值的 96 孔板甩掉孔内培养液,放入超声中超 10 - 30 分钟,晾干 (或烘干) 备用。此步骤可最大程度的洗去污垢及细胞。2、每孔加入 50 - 100ul 的胰酶 (0.05%),我一般加 60ul,加完胰酶后水平振荡 96 孔板以使胰酶均匀覆盖于细胞表面,室温下放置至细胞被消化脱落为止。假如你想消化快一点的话可将 96 孔板放到 37 度培养箱内 (胰酶在 37 度时的活力最大)。对于顽固贴附在壁上的细胞,此步骤最为有效。3、甩掉胰酶,自来水下冲洗,晾干 (或烘干) 备用。如果不烘干就泡酸,那么 96 孔板残留的水分将稀释酸液,长期以往泡酸的效果下降。4、将晾干的 96 孔板泡酸 (中强酸) 过夜,捞起后自来水下冲洗 10 遍;双蒸水冲洗 3 遍。三蒸水冲洗 3 遍。烘干备用。泡酸时特别注意时间不要太长了,否则板子变黄,影响最后的 OD 值的测定。5、做实验前,96 孔板至少在紫外灯下照射 30 分钟,但不能长期照射。紫外线长期照射可使板变黄,我的两块板放在超静台上忘了拿出来,一直照了两个星期,等我从超静台上取出板已经变成黄色。注:1、在实验中若你测得某一个孔的数值偏高,虽然有很多因素会导致数值偏高,但是如果是板底的污点引起的话你可以消除。拿出 96 孔板擦一擦值偏大孔的板底部,再测值。你会发现孔高的值又会到正常水平。因为咱们做实验时手不可避免的接触 96 孔板板底留下痕迹,这些痕迹就会使吸光度升高。

2、96 孔板洗的次数多了,板底自然留下划痕,这就会导致读数的不均而影响实验结果。你不妨在做实验前测一次 96 孔板的值 (此值为初值),实验测得的为后值。后值减去初值就接近实验的真实值。

文章来源:丁香园@ftfsunny

扫码关注「实验菌」,入科研社群,领学习资源

更有优质直播、研选好物、福利活动等你来!

经验交流

提问

感兴趣的产品

荧光光谱仪

抗体制备

全基因组测序仪

hsf5

水分测定仪

维生素诊断试剂盒

真皮乳头细胞

mmp

色谱工作站

感兴趣的厂家

广州派真生物技术有限公司

研载生物科技(上海)有限公司

上海塔望智能科技有限公司

hsf5厂家

水分测定仪厂家

维生素诊断试剂盒厂家

真皮乳头细胞厂家

mmp厂家

色谱工作站厂家

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

移动版: 实验详情页

PCR 实验 protocol 汇总

82 内容 2445 订阅

查看专题

相关实验Protocol 更多

细胞粘附实验(MTT 比色法计数)

WB 过程中常见问题及建议大汇总

Co-IP 背景较深或者条带杂乱的可能原因是什么?如何避免?

MTT 法检测细胞毒性与增殖实验

测 A260/A280 、A260/A230 就知道 DNA 纯不纯,这是为什么呢?

SCI-HUB 使用指南

手把手教你用 PS 和 AI 做出漂亮的 WB 结果图

常见 8 大信号通路总结!

推荐阅读 更多

从病因到早期诊断标志物——全面认识多系统萎缩症

ELISA讲座:全面探索ELISA实验

免疫荧光技术常见问题汇总

【选题投稿】还在为 Meta 选刊烦恼?20+ 本选优期刊汇总

WB 做不出条带?你可能忽视了这个

最全面的MTT大汇总

我的询价

询价列表

点击加载更多

暂时没有已询价产品

发送产品

手机验证

快捷询价 发送名片

让更多商家联系我

当你希望让更多商家联系你时,可以勾选后发送询价,平台会将你的询价消息推荐给更多商家。

发送

提问

用户服务

意见反馈

合作咨询

关于丁香通

产品库

最新产品列表

丁香实验

用户服务中心

试用中心

丁香通新浪微博

公司信息

关于我们

联系我们

友情链接

法律声明

网站导航

加盟丁香园

我是买家

求购商品

品牌专区

品牌学堂

促销专区

我是卖家

服务报价

广告媒体

客户说明

广告规则

企业合作

无忧采购 轻松科研

科研好物关注研选号

意见反馈

MTT实验原理、步骤、结果分析方法及注意事项攻略 - 实验方法 - 丁香通

MTT实验原理、步骤、结果分析方法及注意事项攻略 - 实验方法 - 丁香通

丁香通

丁香园

论坛

丁香客

医药招聘

丁香医生

更多

会议

调查派

用药助手

丁当铺

丁香搜索

医药数据库

来问医生

我要登录

|

免费注册

|

我的丁香通

卖家:

成为卖家

更多合作

买家:

买家中心

移动端

发布求购 用户服务

产品 实验 品牌

搜索

搜产品

搜产品

搜实验

搜品牌

大家都在搜

免费发布求购

搜索

发布求购

全部产品分类

首页

丁香实验new

促销

试用中心

学术专区

资讯

品牌学堂

丁香学社

首页 实验方法 细胞技术 细胞功能测定 MTT实验原理、步骤、结果分析方法及注意事项攻略

MTT实验原理、步骤、结果分析方法及注意事项攻略

MTT实验原理、步骤、结果分析方法及注意事项攻略

关键词: mtt 实验原理 步骤 结果

来源: 互联网

60702 阅读

MTT实验原理、步骤、结果分析方法及注意事项攻略有问题?丁香实验库全新大升级,10000+ 实验方法任你选

前往丁香实验

相关专题

MTT分析法以活细胞代谢物还原剂3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide, MTT噻唑蓝 为基础。MTT为黄色化合物,是一种接受氢离子的染料,可作用于活细胞线粒体中的呼吸链,在琥珀酸脱氢酶和细胞色素C的作用下tetrazolium环开裂,生成蓝色的formazan结晶,formazan结晶的生成量仅与活细胞数目成正比(死细胞中琥珀酸脱氢酶消失,不能将MTT还原)。还原生成的formazan结晶可在含50%的N,N-二甲基甲酰胺和20%的十二甲基磺酸钠(pH 4.7)的MTT溶解液中溶解,利用酶标仪测定490 nm处的光密度OD值,以反映出活细胞数目。也可以用DMSO来溶解。

mtt 粉末和溶液保存时都需要避光,用铝箔纸包好就可以。实验的时候我一般关闭超净台上的日光灯来避光,觉得这样比较好。

MTT步骤如下:

1、接种细胞:用含10%胎小牛血清得培养液配成单个细胞悬液,以每孔1000-10000个细胞接种到96孔板,每孔体积200ul。  2、培养细胞:同一般培养条件,培养3-5天(可根据试验目的和要求决定培养时间)。

3、呈色:培养3-5天后,每孔加MTT溶液(5mg/ml用PBS 配)20ul。继续孵育4小时,终止培养,小心吸弃孔内培养上清液,对于悬浮细胞需要离心后再吸弃孔内培养上清液。每孔加150ul DMSO,振荡10分钟,使结晶物充分融解。

4、比色:选择490nm波长,在酶联免疫监测仪上测定各孔光吸收值,记录结果,以时间为横坐标,吸光值为纵坐标绘制细胞生长曲线。

注意事项:

1、选择适当得细胞接种浓度。  2、避免血清干扰:一般选小于10%的胎牛血清的培养液进行试验。在呈色后尽量吸尽孔内残余培养液。  3、设空白对照:与试验平行不加细胞只加培养液的空白对照。其他试验步骤保持一致,最后比色以空白调零。

MTT实验吸光度最后要在0-0.7之间,超出这个范围就不是直线关系,IC50是半抑制率,意思是抑制率50%的时候药物的浓度。把药品稀释成不同的浓度,然后计算各自的抑制率,以药品的浓度为横坐标,抑制率为纵坐标作图,然后得到50%抑制率时候的药品浓度,就是IC50。要点:药品2倍稀释,多做梯度,做点线图即可!

举个例子:

各组浓度0.1、0.01、0.001、0.0001、0.00001、0.000001,稀释倍数为10,最大浓度为0.1,抑制率为0.95、 0.80、0.65、0.43、0.21、0.06。代入计算公式:

Pm=0.95  Pn=0.06  P=0.95+0.80+0.65+0.43+0.21+0.06=3.1  Xm=lg0.1=-1  lgI=lg0.1/0.01=1  lgIC50=-1-1*(3.1-(3-0.95-0.06)/4)=-3.6025  IC50=0.00025

参考公式:

lgIC50=Xm-I(P-(3-Pm-Pn)/4)  Xm:lg 最大剂量  I:lg(最大剂量/相临剂量)  P:阳性反应率之和  Pm:最大阳性反应率  Pn:最小阳性反应率

抑制率=1-加药组OD值/对照组OD值  公式中的最大最小阳性反应率就是最大最小抑制率

例:

用96孔板培养SMMC-7721肝癌做MTT测细胞活力,应该加多少1640培养基,多少MTT和DMSO合适?根据书上说的加200ul1640,20ulMTT,150ulDMSO加DMSO之前要尽量去掉培养液,便于DMSO溶解甲臜颗粒进行比色测定,一般每孔4000个细胞为宜,既细胞浓度在20000个/ml,MTT加20ul,作用四小时后洗掉上清液,注意不要将甲瓉洗掉,然后每孔加150ul DMSO,在脱色摇床上振荡10分钟,然后测吸光值。

扫码关注「实验菌」,入科研社群,领学习资源

更有优质直播、研选好物、福利活动等你来!

经验交流

查看更多  

彩虹伊伊WB9C

你所在的学校的补助在全国是什么水平? 还记得你在读研时,所在学校的补助是多少吗~?读博的也可以说说呀。我的好少,有点想哭。   101 评论

彩虹伊伊WB9C

科研汪也想有春天:告诉我你们的另一半都在哪里找的? 小伙伴们,请问你们的女(男)朋友是怎么找到的?(好给后来的朋友参考啊)是交友网站,还是七大姑八大姨介绍,还是同学自然成事?春天到了,我也想拥有一段甜甜的恋爱~看看你们可怜又可爱的小师弟小师妹吧!   41 评论

一粒会飞的沙

细胞污染 悬浮细胞复苏后培养2.3天会出现小黑点,在倒置显微镜第四挡可见细菌在活动。采用两次离心,然后加平时双倍量的抗生素,效果不佳。实验用的东西都重新高压灭菌了,培养液也重新过滤了,个人操作也更加注意了,但仍然在复苏后出现细菌,苦恼!!!   35 评论

提问

感兴趣的产品

色谱工作站

hif2a抗体

维生素诊断试剂盒

pan02 细胞株

端粒酶试剂盒 银染

物理光学仪器

生物质谱

立克次体抗体

章鱼胺试剂盒

感兴趣的厂家

菁良科技(深圳)有限公司

云舟生物科技(广州)股份有限公司

仪景通光学科技(上海)有限公司

pan02 细胞株厂家

端粒酶试剂盒 银染厂家

物理光学仪器厂家

生物质谱厂家

立克次体抗体厂家

章鱼胺试剂盒厂家

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

移动版: 实验详情页

实用统计方法和技巧

57 内容 1373 订阅

查看专题

相关实验Protocol 更多

细胞粘附实验(MTT 比色法计数)

MTT 法检测细胞毒性与增殖实验

MTT 法检测药物对细菌的半抑制浓度

MTT 法检测药物对贴壁细胞的半抑制浓度

细胞计数方法

MTT实验最全指南

ROS的检测方法

Transwell侵袭实验总结之操作步骤

推荐阅读 更多

磁珠纯化操作步骤

Western 实验步骤

流式细胞表面染色步骤

Strep-Tactin® 实验步骤

原核表达操作步骤及注意事项

最全面的MTT大汇总

我的询价

询价列表

点击加载更多

暂时没有已询价产品

发送产品

手机验证

快捷询价 发送名片

让更多商家联系我

当你希望让更多商家联系你时,可以勾选后发送询价,平台会将你的询价消息推荐给更多商家。

发送

提问

用户服务

意见反馈

合作咨询

关于丁香通

产品库

最新产品列表

丁香实验

用户服务中心

试用中心

丁香通新浪微博

公司信息

关于我们

联系我们

友情链接

法律声明

网站导航

加盟丁香园

我是买家

求购商品

品牌专区

品牌学堂

促销专区

我是卖家

服务报价

广告媒体

客户说明

广告规则

企业合作

无忧采购 轻松科研

科研好物关注研选号

意见反馈

CyQUANT™ MTT Cell Viability Assay

CyQUANT™ MTT Cell Viability Assay

You need to enable JavaScript to run this app.

Hamburger Menu Button

Thermo Fisher Scientific Logo

Sign in

Don't have an account ?

Create Account

Products

Antibodies

Cell Culture Media

Chemicals

Western Blot Products

Chromatography Columns and Cartridges

Lab Equipment

Lab Plasticware and Supplies

Microplates

Oligos, Primers, Probes and Genes

TaqMan Real-Time PCR Assays

Greener Products

See all product categories

Applications

Bioprocessing

Cell Culture and Transfection

Food and Beverage

Lab Solutions

Pharma and Biopharma

Real-Time PCR

Semiconductor Analysis

Clinical and Diagnostics

Digital Solutions

Spectroscopy, Elemental and Isotope Analysis

See all applications and techniques

Services

CDMO and Clinical Trial Services

Custom Services

Enterprise Services

Financial and Leasing Services

Instrument Services

Lab Informatics

OEM and Commercial Supply

Training Services

See all services

Help and Support

How to Order

Instrument Support

Learning Centers

Register for an Account

Technical Support Centers

See all help and support topics

Popular

TaqMan Real-Time PCR Assays

Antibodies

Oligos, Primers & Probes

GeneArt Gene Synthesis

Cell Culture Plastics

Contact Us

Quick Order

Order Status and Tracking

Documents and Certificates

Thermo Fisher Scientific Logo

Search

Thermo Fisher Scientific

Search All

Search

Search button

Search button

Close

Order Status

Quick Order

Sign in

Sign in

Don't have an account ?

Create Account

Account

Check Order Status

Custom Products & Projects

Instrument Management

HomeShop All ProductsCell Analysis ProductsCell Based AssaysCell Function Reagents and KitsCyQUANT™ MTT Cell Viability AssayInvitrogen™CyQUANT™ MTT Cell Viability AssayCatalog number: V13154Related applications: Pharma & BiopharmaCell Viability, Proliferation & FunctionCellular ImagingCell Counting, Viability, & CryopreservationTechnical SupportCustomer ServiceInvitrogen™CyQUANT™ MTT Cell Viability AssayCatalog number: V13154Related applications: Pharma & BiopharmaCell Viability, Proliferation & FunctionCellular ImagingCell Counting, Viability, & CryopreservationTechnical SupportCustomer ServiceCatalog NumberV13154Unit Size1,000 assaysPrice (USD)Contact Us ›Save to listCatalog NumberUnit SizePrice (USD)V131541,000 assaysContact Us ›Save to listProduct OverviewFiguresVideosRecommendationsRecommendationsDocumentsFAQCitations & ReferencesAdditional InformationRecommendationsThe CyQUANT MTT Cell Viability Assay utilizes the well-established and widely used MTT reagent to determine mammalian cell viability. The redox potential in active mammalian cells reduces MTT to a strongly pigmented formazan product. After solubilization, the absorbance of the formazan can be measured with a microplate absorbance reader. The CyQUANT MTT Cell Viability Assay is a complete, optimized kit that provides all the reagents necessary for the detection of mammalian cell viability. The kit provides a sufficient amount of material for ∼1000 assays.More tools for microplate-based detection of viability › Features of the CyQUANT MTT Cell Viability Assay include:• Complete and optimized kit for colorimetric detection of viable mammalian cells• Utilizes the well-established MTT reagent as reporter of cellular redox potential• Configured to perform 1,000 tests using a 96-well microplateMeasuring changes to cell viability is a fundamental method for assessing cell health, determining genotoxicity, and evaluating anti-cancer drugs. Several methods can be used for such determinations, but procedures using colorimetric indicators provide a rapid and cost-effective method for determining changes to mammalian cell viability. Among the various colorimetric viability assays, the MTT assay is a well-established and popular assay.The redox potential in viable mammalian cells causes the water soluble MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to convert to an insoluble formazan product. After solubilization of the formazan with the included SDS (sodium dodecyl sulfate) reagent, the concentration of the colorimetric probe is determined by an optical density measurement at 570 nm.The CyQUANT MTT Cell Viability Assay provides a simple method for determination of mammalian cell viability using standard microplate absorbance readers. Simply prepare the MTT reagent, add it to the cells, solubilize the resulting formazan, and determine the optical density using a standard microplate reader. The CyQUANT MTT Cell Viability Assay provides the necessary materials to perform 1,000 individual tests using standard 96-well microplates.For Research Use Only. Not for use in diagnostic procedures.SpecificationsDetection MethodColorimetricFor Use With (Application)Viability AssayFor Use With (Equipment)Microplate ReaderProduct TypeCell Viability AssayDye TypeOther Label(s) or Dye(s)Format96-well plateProduct LineCyQUANT™Shipping ConditionRoom TemperatureContents & StorageStore at 2–8°C and protect from light.FiguresDocuments & DownloadsCertificatesSearch by lot number or partial lot numberSearchRequest a CertificateFrequently asked questions (FAQs)Citations & ReferencesSearch citations by name, author, journal title or abstract textSearch

Ordering

Plus Icon

Minus Icon

Order Status

Order Help

Quick Order

Supply Center

eProcurement

Support

Plus Icon

Minus Icon

Help and Support

Contact Us

Technical Support Centers

Documents and Certificates

Report a Site Issue

Resources

Plus Icon

Minus Icon

Learning Centers

Promotions

Events and Webinars

Social Media

About Thermo Fisher

Plus Icon

Minus Icon

About Us

Careers

Investors

News

Social Responsibility

Trademarks

Our Portfolio

Plus Icon

Minus Icon

Thermo Scientific

Applied Biosystems

Invitrogen

Gibco

Ion Torrent

Fisher Scientific

Unity Lab Services

Patheon

PPD

Terms & Conditions

Privacy Policy

Price & Freight Policy

© Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

Philippines

细胞增殖检测:MTT法 - 知乎

细胞增殖检测:MTT法 - 知乎切换模式写文章登录/注册细胞增殖检测:MTT法墨鱼丸子一个有跨专业读研经历的职场学姐 MTT分析法以活细胞代谢物还原剂3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide, MTT噻唑蓝为基础。MTT为黄色化合物,是一种接受氢离子的染料,可作用于活细胞线粒体中的呼吸链,在琥珀酸脱氢酶和细胞色素C的作用下tetrazolium环开裂,生成蓝色的formazan结晶,formazan结晶的生成量仅与活细胞数目成正比(死细胞中琥珀酸脱氢酶消失,不能将MTT还原)。 还原生成的formazan结晶可在含50%的N,N-二甲基甲酰胺和20%的十二甲基磺酸钠(pH 4.7)的MTT溶解液中溶解,利用酶标仪测定490 nm处的光密度OD值,以反映出活细胞数目。也可以用DMSO来溶解。 MTT粉末和溶液保存时都需要避光,用铝箔纸包好就可以。实验的时候我一般关闭超净台上的日光灯来避光,觉得这样比较好。一、步骤1、接种细胞用含10%胎小牛血清得培养液配成单个细胞悬液,以每孔1000-10000个细胞接种到96孔板,每孔体积200ul。2、培养细胞同一般培养条件,培养3-5天(可根据试验目的和要求决定培养时间)。3、呈色培养3-5天后,每孔加MTT溶液(5mg/ml用PBS 配)20ul.继续孵育4小时,终止培养,小心吸弃孔内培养上清液,对于悬浮细胞需要离心后再吸弃孔内培养上清液。每孔加150ul DMSO,振荡10分钟,使结晶物充分融解。4、比色选择490nm波长,在酶联免疫监测仪上测定各孔光吸收值,记录结果,以时间为横坐标,吸光值为纵坐标绘制细胞生长曲线。二、注意事项1、选择适当得细胞接种浓度。2、避免血清干扰:一般选小于10%的胎牛血清的培养液进行试验。在呈色后尽量吸尽孔内残余培养液。3、设空白对照:与试验平行不加细胞只加培养液的空白对照。其他试验步骤保持一致,最后比色以空白调零。MTT实验吸光度最后要在0-0.7之间,超出这个范围就不是直线关系,IC50是半抑制率,意思是抑制率50%的时候药物的浓度。把药品稀释成不同的浓度,然后计算各自的抑制率,以药品的浓度为横坐标,抑制率为纵坐标作图,然后得到50%抑制率时候的药品浓度,就是IC50。要点:药品2倍稀释,多做梯度,做点线图即可!三、举例各组浓度0.1、0.01、0.001、0.0001、0.00001、0.000001,稀释倍数为10,最大浓度为0.1,抑制率为0.95、0.80、0.65、0.43、0.21,0.06。代入计算公式:Pm=0.95Pn=0.06P=0.95+0.80+0.65+0.43+0.21+0.06=3.1Xm=lg0.1=-1lgI=lg0.1/0.01=1lgIC50=-1-1*(3.1-(3-0.95-0.06)/4)=-3.6025IC50=0.00025有一个公式可供参考;lgIC50=Xm-I(P-(3-Pm-Pn)/4)Xm:lg 最大剂量I:lg(最大剂量/相临剂量)P:阳性反应率之和Pm:最大阳性反应率Pn:最小阳性反应率抑制率=1-加药组OD值/对照组OD值公式中的最大最小阳性反应率就是最大最小抑制率例: 用96孔板培养SMMC-7721肝癌做MTT测细胞活力,应该加多少1640培养基,多少MTT和DMSO合适?根据书上说的加200ul1640,20ulMTT,150ulDMSO 加DMSO之前要尽量去掉培养液,便于DMSO溶解甲臜颗粒进行比色测定。 一般每孔4000个细胞为宜,既细胞浓度在20000个/ml,MTT加20ul,作用四小时后洗掉上清液,注意不要将甲瓉洗掉,然后每孔加150ul DMSO,在脱色摇床上振荡10分钟,然后测吸光值。 一般要低于IC50,避免非调亡性杀伤的细胞太多,造成流式细胞仪检测碎片太多。我一般用1/2-1/3的IC50,作用时间为36h。一般肿瘤细胞系空白处理的调亡率应低于1%,用药后一般为5-10%(Annexin V),细胞周期的亚G0峰比较明显。MTT法心得 MTT实验是检测细胞活力的实验方法,由于细胞活力与细胞数呈正相关,因此也常常用来检测细胞的增殖情况。一、MTT的原理 活细胞有琥珀酸脱氢酶,将MTT还原成棕褐色沉淀。二、MTT法检测细胞增殖实验的注意事项1、培养好细胞点板 养细胞没啥好说的,如果不知道细胞如何养,那就看看相关的文献方法。如果知道了细胞的名字,就可以上http://www.atcc.org检索细胞的培养信息,这个网站上的培养方法是标准培养方法。当然可以根据自己实验要求进行修改。由于细胞计数很繁琐,点板时的细胞浓度是最难掌握的。 自己先将细胞养一段时间,大概了解细胞的增殖情况,在MTT检测时实际上要求细胞大概能长满96-孔板的80-90%,如果打算养48小时就检测,根据细胞的生长情况反推点板时的细胞浓度状况。 这时可以将细胞不进行计数,将消化好的细胞混匀后(可能是10ml)直接在一个废弃(最好进行过无菌处理)的96孔板中依次加入180、100、50微升细胞,将细胞放置几分钟就会沉到板底了,这时在显微镜下观察,推测哪个孔的细胞48h能基本长满板底,假设50微升的孔比较合适,而点板时没孔需点200 微升,那么就将细胞浓度再稀释4倍就可以正式点板了,这时顺便将细胞进行计数(因为实验记录要求写啊)。这样就OK了! 如果细胞还太多,将细胞稀释4倍后再重复以上操作。注意:不要过分信赖细胞计数,因为细胞计数的取样量为20 微升左右,由于颗粒的分布不均匀,代表性是很差的。建议:细胞计数一定要会,但不要完全依赖它。 点板时一定要将细胞消化成单个细胞,而且一定要混匀,最好用排枪,否则,MTT的SD会狂大!2、点板布局 其实这一点很多人不懈一顾。如果你的细胞要养48h或更长,建议不要吝啬96-孔板的四周边孔,这32个边孔不能使用,建议加入灭菌PBS以饱和中间64个孔的水分。 因为细胞培养过程中,边孔的水分蒸发很快,培养液及里面的药物会出现浓缩现象,细胞的状况就复杂了,有些人称之为%26ldquo;边缘效应%26rdquo;这些孔的SD也会狂大,既然如此,不如不用。3、加MTT 如果确认你考察的药物没有氧化还原性,你可以直接加入MTT溶液(总体积的1/10),如果你没有把握,建议在加MTT前换一次液;如果你肯定考察的药物的氧化还原性很强,比如谷胱甘肽、Vit E、VitC,那建议你用PBS将细胞洗洗,否则这些药物会将MTT还原成棕褐色沉淀,这种效果可能是你不需要的。4、加入MTT后的反应 时间为3-4h,此时弃去各孔中的液体在加入200微升的DMSO。为了将沉淀溶解完全,尽可能将水弃除干净,加入DMSO后在摇床上震摇10min。提醒:如果你的细胞贴壁不好,此时的沉淀在弃去液体时易丢失,因此贴壁不好的细胞在点板时记得将96孔板用多聚赖氨酸处理处理,要么在弃液体时先用甩板机离心,再轻轻弃去液体。关于DMSO的量,每孔的体积有点儿差异不干扰检测,只要能将沉淀完全溶解就行了。 时间为3-4h,此时弃去各孔中的液体在加入200微升的DMSO。为了将沉淀溶解完全,尽可能将水弃除干净,加入DMSO后在摇床上震摇10min。提醒:如果你的细胞贴壁不好,此时的沉淀在弃去液体时易丢失,因此贴壁不好的细胞在点板时记得将96孔板用多聚赖氨酸处理处理,要么在弃液体时先用甩板机离心,再轻轻弃去液体。关于DMSO的量,每孔的体积有点儿差异不干扰检测,只要能将沉淀完全溶解就行了。5、检测MTT 还原的MTT在460-630均有较好的吸收,如果你的酶标仪是滤光片,可以选470 nm左右或630 nm左右的滤光片,如果酶标仪有单波长,你可以在检测前扫描一下吸收谱,选用最大细说波长检测就是了,最大波长,大概在550nm附近,必要时加一个参比波长以扣除非特异性吸收。6、吸收值分析 在理想的MTT实验中,如果是细胞抑制实验,不加药物处理组的吸收值应该在0.8-1.2左右,太小检测误差占的比例较多,太大吸收值可能已经超出线性范围。这个原理在朗伯-比尔定律中有解释。7、建议 如果你觉得MTT中出现的问题不好解决,那么建议你做CCK-8实验,原理与MTT相似,但操作上简化些,当然,费用也稍微高一些。发布于 2022-03-07 09:11细胞细胞增殖实验​赞同 16​​添加评论​分享​喜欢​收藏​申请